化工原理实验指导书

上传人:re****.1 文档编号:493693177 上传时间:2022-12-26 格式:DOC 页数:48 大小:802.04KB
返回 下载 相关 举报
化工原理实验指导书_第1页
第1页 / 共48页
化工原理实验指导书_第2页
第2页 / 共48页
化工原理实验指导书_第3页
第3页 / 共48页
化工原理实验指导书_第4页
第4页 / 共48页
化工原理实验指导书_第5页
第5页 / 共48页
点击查看更多>>
资源描述

《化工原理实验指导书》由会员分享,可在线阅读,更多相关《化工原理实验指导书(48页珍藏版)》请在金锄头文库上搜索。

1、化工原理实验指导书杜华、钤小平、毕研迎编整山东师范大学化工原理教研室2023.3实验一 流体能量转换(柏努利)演示实验一、实验目的1、加深对能量转化概念的理解;2、观测流体流经扩大管、缩小管段时,各截面上静压变化。二、实验原理对于不可压缩流体,在导管内作定常流动,系统与环境又无功的互换时,若以单位质量流体为衡算基准,由于导管截面上的流速不同,而引起相应静压头变化,其关系可由流动过程中能量恒算方程来描述,即:式中:每公斤质量流体具有的位能,J/kg; 表达每公斤质量流体具有的动能,J/kg; 表达每公斤质量流体具有的压强能,J/kg;表达每公斤质量流体在流动过程中的摩摖损失,J/kg。 若以单位

2、重量流体为衡算基准时,则又可表达为 mm水柱 (2)式中: Z 流体的位压头,m液柱; P 流体的压强,Pa;u 流体的平均流速,m s 1; 流体的密度,kg m 3; 流动系统内因阻力导致的能量损失,J kg 1; H流动系统内因阻力导致的压头损失,m液柱。 因此,由于导管截面和位置发生变化引起流速变化,致使部分静-压头转化成动压头,它的变化可由各玻璃管中水柱高度指示出来。三、实验装置如图1-1所示,本实验装置重要由实验导管、稳压溢流水槽和三对侧压管所组成。实验导管为一水平装置的变径圆管,沿程分四处设立压管。每处测压管有一对并列的测压管组成,分别测量该截面处的静压头和冲压头。图1-1伯努利

3、实验装置流程图 1-转子流量计 2-移动框架 3-排污阀 4-流量调节阀1 5-储水箱 6-实验导管 7-循环泵 8-进口调节阀2 9-水箱放水调节阀3 10-溢流管 11-稳压水槽 12-水泵开关盒 13-标尺 14-压头测量管图1-2 实验导管结构图实验装置的流程如图1-1所示。液体油稳压水槽流入实验导管,途径直径分别为19、32和19mm的管子,再通过一个19mm内径弯管,最后排除出设备。流体流量由出口调节阀调节。流量从转子流量计测定之。实验前,先将水充满低位储水箱,然后关闭泵的出口阀和试管导管出口调节阀,并将水灌满稳压流水水箱,最后,设法排尽系统中的气泡。实验时,先启动循环水泵,然后依

4、次启动出口阀和调节阀,水由低位储水箱被送入稳压溢流水箱。流经实验导管后再返回低位储水箱中。流体流量可由实验管出口调节阀控制。泵出口阀控制溢流水箱的溢流量,以保持水箱内液面恒定,从而保证流动体系在整个实验过程中维持稳定流动。四、实验方法 1、非流动体的机械能分布及其转换演示时,将泵的出口阀和实验导管出口的调节阀所有关闭,系统内的液体处在静止状态。此时,可观测到:实验导管上的所有的测压管中的水柱高度都是相同的,且其液面与溢流水箱内的液面平齐。2、流动体系的机械能分布及其转换 启动循环水泵,将泵出口阀逐渐启动,调节流量至溢流水箱中有足够的溢流水溢出。缓慢地启动实验导管的出口调节阀,使导管内水开始流动

5、,各测压管中的水柱高度将随之开始发生变化。可观测到:各截面上的水柱高度差随着流体流量的增大而增大。这说明,当流量加大时,流体流过导管各截面上的流速也随之加大。这就需要更多的静压头转化为动压头,表现为每对测压管的水柱高度差加大。同时,各对测压管的右侧管中水柱高度则随流体流量增大而下降,这说明流体在流动过程中,能量损失与流体流速成正比。流速愈大,流体在流动过程中能量损失亦愈大。 实验二 压强及其测量演示实验装置一、实验目的:1)掌握绝对压强、表压强和真空度之间的区别与联系。2)掌握流体流柱高度、压头与压强之间的区别与联系。 3)掌握流体压强的几种测量方法。 二、实验装置流程及特点:装置由一容器装在

6、可上下移动的道轨上,可对固定容器进行加压或减压操作。装置为挂壁式教仪设备,使用方便。1.选用有机玻璃制作,可视性好。2.可方便地使容器内的液体处在正压力系统或负压系统。3.多种测压导管,可选用不同的指示剂来测取容器内压力。4.可选用不同指示剂来测取压力。 5.加强对静力学方程的结识和工程事实上的应用。外形尺寸:900700mm 挂壁镜框式。 三、实验装置组成: 本装置重要由平衡杯、反映器、和U形液柱压差计等组成。其流程如图所示。 主体设备为一有机玻璃制造的反映模型,平衡杯与反映器底部相连,并运用平衡杯的位置高低来调节反映器内的液位,使液面上方产生不同的压强。 反映器顶部装有一个放空阀和两个测压

7、口,实验前,先打开放空阀,水由平衡杯中加入,加水量以使平衡杯与器内液面平齐,液面达反映器高度的1/2处为宜。一个测压口直接联接一联程弹簧压力表。另一个测压口联接三支U形管压差计,压差计中分别装有水银和水两种指示剂,微差压计中同时装有四氯化碳和氯化钙水溶液两种指示剂。每支压差计上各装一旋塞用来进行开闭控制。图:流体静力学演示实验装置四、演示操作环节: 1)绝对压强、表压强和真空度之间的关系 (1)将器顶放空阀打开,并将平衡杯置于反映器相同高度,使杯内液面与器内液面平齐,再将水银柱压差计上的旋塞打开,观测弹簧压力表和水银柱压差计的读数。可观测到:弹簧压力表和水银柱压差计显示的读数为零。 (2)将器

8、顶放空阀关闭,使器内成为密闭体系,然后将平衡杯缓慢举起,并置于最高位置上,观测弹簧压力表和水银柱压差计的读数。可观测到:随着平衡杯的位置提高,液面上方压强不断提高,同时,水银压差计中液柱向左侧(连接大气一侧)上升一定的高度。 (3)将平衡杯放回到起始位置上,再观测弹簧压力表和压差计上读数。可观测到:随着平衡杯位置的减少,器内液面也随之减少,液面上方空气膨胀而压强减少,平衡杯恢复到起始位置时,弹簧压力表和水银压差计又显示为零,说明反映器内压强与大气压强相同。 (4)将平衡杯缓慢放下,并置于最低位置上,观测弹簧压力表与水银压差计的读数。可观测到:弹簧压力计显示出负的读数,同时,水银压差计中液柱向右

9、侧(连通测压口一侧)上升一定高度。这说明反映器内的操作压强低于大气压强。压力表显示的读数即为器内压强低于大气压强的数值。 2)以液柱高度表达的压强与液柱压力计 先将放空阀关闭,再略为提高平衡杯的位置,然后依次打开水银柱压差计、水柱压差计和微压差计上的旋塞。可观测到:在测量同一压强时,水银压差计显示的水银柱高度差最小,水柱压差计显示的水柱高度差中档,而微压差计显示的液柱高度差最大。这说明:当用液柱高度来表达流体压强时,其值的大小还取决于液柱的高度。为了提高测量精度,压差计的指示剂选择必须合适。实验三 雷诺实验指导一、实验目的1观测流体在管内流动的两种不同流型。 2测定临界雷诺数。二、基本原理流体

10、流动有两种不同型态,即层流(滞流)和湍流(紊流)。流体作层流流动时,其流体质点作直线运动,且互相干行;湍流时质点紊乱地向各个方向作不规则的运动,但流体的主体向某一方向流动。雷诺准数是判断流动型态的准数,若流体在圆管内流动,则雷诺准数可用下式表达:式中,Re雷诺准数,无因次; d管子内径,26.4mm; u流体流速,ms; 流体密度,kgm3; 流体粘度;Pas。 对于一定温度的流体,在特定的圆管内流动,雷诺准数仅与流体流速有关。本实验通过改变流体在管内的速度,观测在不同雷诺准数下流体流型的变化,一般认为Re4000时。流动为湍流;2023Re4000时,流动为过渡流。 三、实验装置与流程实验装

11、置如图1所示。重要由玻璃实验导管、低位贮水槽、循环水泵、稳压溢流水槽、缓冲水槽以及流量计等部分组成。 实验前,先将水充满低位贮水槽,然后关闭泵的出口阀和流量计后的调节阀,再将溢流水槽到缓冲水槽的整个系统加满水。最后,设法排尽系统中的气泡。 实验操作时,先启动循环水泵,然后启动泵的出口阀及流量计后的调节阀。水由稳压溢流水槽流经实验导管、缓冲槽和流量计,最后流回低位贮水槽。水流量的大小,可由流量计后调节阀调节。泵的出口阀控制溢流水槽的溢流量。 示踪剂采用红色墨水,它由红墨水贮瓶经连接软管和玻璃注射管的细孔喷嘴,注入实验导管。细孔玻璃注射管(或注射针头)位于实验导管人口的轴线部位。图1 雷诺演示实验

12、装置 1-可移动框架2-循环水泵 3-低位贮水槽4-流量调节闸阀5-旁路阀门6-转子流量计7-溢流水槽 8-红墨水贮瓶9-红墨水喷针10-玻璃实验导管 11-低位贮水槽排污阀四、实验操作1.层流流动类型实验时,先少许启动凋节阀,将流速调至所需要的值。再调节红墨水贮瓶的下口旋塞,并用自由夹作精细调节,使红墨水的注人流速与实验导管中主体流体的流速相适应,一般略低于主体流体的流速为宜。待流动稳定后记录主体流体的流量。此时,在实验导管的轴线上,就可观测到一条平直的红色细流,好象一根拉直的红线同样。 2.湍流流动型态 缓慢地加大调节阀的开度,使水流量平稳地增大。玻璃导管内的流速也随之平稳地增大。同时,相

13、应地适当凋节泵出口阀的开度,以保持溢流水槽内仍有一定溢流量,以保证实验导管内的流体始终为稳定流动。可观测到:玻璃导管轴线上呈直线流动的红色细流,开始发生波动。随着流速的增大,红色细流的波动限度也随之增大,最后断裂成一段段的红色细流。当流速继续增大时,红墨水进入实验导管后。立即呈烟雾状分散在整个导管内,进而迅速与主体水流混为体,使整个管内流体染为红色,以致无法辨别红墨水的流线。实验四 流体流动阻力测定一、实验目的1掌握流体流经直管和管阀件时阻力损失的测定方法,通过实验了解流体流动中能量损失的变化规律。 2测定直管摩擦系数与雷诺准数Re的关系,将所得的Re方程与公认经验关系比较。 3测定流体流经闸

14、阀等管件时的局部阻力系数。 4学会压差计和流量计的使用方法。5观测组成管路的各种管件、阀件,并了解其作用。二、基本原理流体在管内流动时,由于粘性剪应力和涡流的存在,不可避免地要消耗一定的机械能,这种机械能的消耗涉及流体流经直管的沿程阻力和因流体运动方向改变所引起的局部阻力。 1沿程阻力 流体在水平均匀管道中稳定流动时,阻力损失表现为压力减少。即 影响阻力损失的因素很多,特别对湍流流体,目前尚不能完全用理论方法求解,必须通过实验研究其规律。为了减少实验工作量,使实验结果具有普遍意义,必须采用因次分析方法将各变量综合成准数关联式。根据因次分析,影响阻力损失的因素有, (1)流体性质:密度,粘度; (2)管路的几何尺寸:管径d,管长l,管壁粗糙度; (3)流动条件:流速。 可表达为: 组合成如下的无因次式: 令 则式中压降 Pahf直管阻力损失 J/kg,流体密度kg/m3直管摩擦系数,无因次l直管长度 md直管内径 mu流体流速,由实验测定 m/s称为直管摩擦系数。滞流(层流)时,64Re;湍流时是雷诺准数Re和相对粗糙度的函数,须由实验拟定.2局部阻力 局部阻力通常有两种表达方法,即当量长度法和阻力系数法。 当量长度法 流体流过某

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 活动策划

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号