泰勒公式例题.doc

上传人:夏** 文档编号:492651733 上传时间:2022-11-30 格式:DOC 页数:28 大小:2.22MB
返回 下载 相关 举报
泰勒公式例题.doc_第1页
第1页 / 共28页
泰勒公式例题.doc_第2页
第2页 / 共28页
泰勒公式例题.doc_第3页
第3页 / 共28页
泰勒公式例题.doc_第4页
第4页 / 共28页
泰勒公式例题.doc_第5页
第5页 / 共28页
点击查看更多>>
资源描述

《泰勒公式例题.doc》由会员分享,可在线阅读,更多相关《泰勒公式例题.doc(28页珍藏版)》请在金锄头文库上搜索。

1、泰勒公式及无穷小变换的应用泰勒公式及其应用等价无穷小在求函数极限中的应用及推广泰勒公式及其应用 引言泰勒公式是高等数学中一个非常重要的内容,它将一些复杂函数近似地表示为简单的多项式函数,这种化繁为简的功能,使它成为分析和研究其他数学问题的有力杠杆.作者通过阅读大量的参考文献,从中搜集了大量的习题,通过认真演算,其中少数难度较大的题目之证明来自相应的参考文献,并对这些应用方法做了系统的归纳和总结.由于本文的主要内容是介绍应用,所以,本文会以大量的例题进行讲解说明. 预备知识定义2.1 若函数在存在阶导数,则有 (1)这里为佩亚诺型余项,称(1)f在点的泰勒公式.当=0时,(1)式变成,称此式为(

2、带有佩亚诺余项的)麦克劳林公式.定义2.2 若函数 在某邻域内为存在直至 阶的连续导数,则, (2)这里为拉格朗日余项,其中在与之间,称(2)为在的泰勒公式.当=0时,(2)式变成称此式为(带有拉格朗日余项的)麦克劳林公式.常见函数的展开式:.定理2.1(介值定理) 设函数 在闭区间 上连续,且 ,若为介于 与之间的任何实数,则至少存在一点,使得.3 泰勒公式的应用3.1 利用泰勒公式求极限为了简化极限运算,有时可用某项的泰勒展开式来代替该项,使得原来函数的极限转化为类似多项式有理式的极限,就能简捷地求出.例3.1 求极限.分析:此为型极限,若用罗比达法求解,则很麻烦,这时可将和分别用泰勒展开

3、式代替,则可简化此比式.解 由,得,于是.例3.2极限 . 分析:此为型极限,若用罗比达法求解,则很麻烦,这时可将和sinx, 分别用泰勒展开式代替,则可简化此比式.解: 由, 于是例3.3利用泰勒展开式再求极限。解:,【注解】现在,我们可以彻底地说清楚下述解法的错误之处因为,从而当时,应为3.2 利用泰勒公式证明不等式当所要证明的不等式是含有多项式和初等函数的混合物,不妨作一个辅助函数并用泰勒公式代替,往往使证明方便简捷.例3.2 当时,证明.证明 取,则带入泰勒公式,其中=3,得,其中.故当时,.3.3 利用泰勒公式判断级数的敛散性当级数的通项表达式是由不同类型函数式构成的繁难形式时,往往

4、利用泰勒公式将级数通项简化成统一形式,以便利用判敛准则.3.3 利用泰勒公式判断广义积分的敛散性例3 由于收敛,所以例3.3 讨论级数的敛散性.分析:直接根据通项去判断该级数是正向级数还是非正向级数比较困难,因而也就无法恰当选择判敛方法,注意到,若将其泰勒展开为的幂的形式,开二次方后恰与相呼应,会使判敛容易进行.解 因为,所以,所以故该级数是正向级数.又因为,所以.因为收敛,所以由正向级数比较判别法知原级数收敛.3.4 利用泰勒公式证明根的唯一存在性例3.4 设f(x)在上二阶可导,且,对, 证明: 在内存在唯一实根.分析:这里f(x)是抽象函数,直接讨论的根有困难,由题设f(x)在上二阶可导

5、且,可考虑将f(x)在a点展开一阶泰勒公式,然后设法应用戒指定理证明.证明 因为,所以单调减少,又,因此xa时,故f(x)在上严格单调减少.在a点展开一阶泰勒公式有由题设,于是有,从而必存在,使得,又因为,在上应用连续函数的介值定理,存在,使,由f(x)的严格单调性知唯一,因此方程在内存在唯一实根.3.5 利用泰勒公式判断函数的极值例3.5 (极值的第二充分条件)设在的某邻域内一阶可导,在处二阶可导,且,.(i)若,则在取得极大值.(ii) 若,则在取得极小值.证明 由条件,可得f在处的二阶泰勒公式.由于,因此.(*)又因,故存在正数,当时,与同号.所以,当时,(*)式取负值,从而对任意有,即

6、在取得极大值.同样对,可得在取得极小值.3.6 利用泰勒公式求初等函数的幂级数展开式利用基本初等函数的幂级数展开式,通过加减乘等运算进而可以求得一些较复杂的初等函数的幂级数展开式.例3.6 求的幂级数展开式.解 利用泰勒公式3.7 利用泰勒公式进行近似计算利用泰勒公式可以得到函数的近似计算式和一些数值的近似计算,利用麦克劳林展开得到函数的近似计算式为,其误差是余项.例3.7 计算Ln1.2的值,使误差不超过0.0001解 先写出f(x)=Ln(1+x)带拉格朗日型余项的麦克劳林展开式:,其中(在0与x之间).令,要使则取即可.因此当要求的算式不能得出它的准确值时,即只能求出其近似值,这时泰勒公

7、式是解决这种问题的最好方法.例3.8 求的近似值,精确到.解 因为中的被积函数是不可积的(即不能用初级函数表达),现用泰勒公式的方法求的近似值.在的展开式中以代替 x得逐项积分,得上式右端为一个收敛的交错级数,由其余项的估计式知3.8 利用泰勒公式求高阶导数在某些点的数值如果f(x)泰勒公式已知,其通项中的加项的系数正是,从而可反过来求高阶导数数值,而不必再依次求导.例3.9 求函数在x=1处的高阶导数.解 设x=u+1,则,在u=0的泰勒公式为,从而,而g(u)中的泰勒展开式中含的项应为,从g(u)的展开式知的项为,因此,.3.9 利用泰勒公式求行列式的值若一个行列式可看做x的函数(一般是x

8、的n次多项式),记作f(x),按泰勒公式在某处展开,用这一方法可求得一些行列式的值.例 3.10 求n阶行列式 D= (1)解 记,按泰勒公式在z处展开:, (2)易知 (3)由(3)得,.根据行列式求导的规则,有于是在处的各阶导数为, 把以上各导数代入(2)式中,有若,有,若,有.4 总结本文主要介绍了泰勒公式以及它的九个应用,使我们对泰勒公式有了更深一层的理解,怎样应用泰勒公式解题有了更深一层的认识.,只要在解题训练中注意分析,研究题设条件及其形式特点,并把握上述处理规则,就能比较好地掌握利用泰勒公式解题的技巧. 无穷小 极限的简单计算【教学目的】1、理解无穷小与无穷大的概念; 2、掌握无

9、穷小的性质与比较 会用等价无穷小求极限;3、不同类型的未定式的不同解法。【教学内容】1、无穷小与无穷大;2、无穷小的比较; 3、几个常用的等价无穷小 等价无穷小替换; 4、求极限的方法。【重点难点】重点是掌握无穷小的性质与比较 用等价无穷小求极限。难点是未定式的极限的求法。【教学设计】首先介绍无穷小和无穷大的概念和性质(30分钟),在理解无穷小与无穷大的概念和性质的基础上,让学生重点掌握用等价无穷小求极限的方法(20分钟)。最后归纳总结求极限的常用方法和技巧(25分钟),课堂练习(15分钟)。【授课内容】一、无穷小与无穷大1.定义前面我们研究了数列的极限、(、)函数的极限、(、)函数的极限这七

10、种趋近方式。下面我们用表示上述七种的某一种趋近方式,即定义:当在给定的下,以零为极限,则称是下的无穷小,即。例如, 【注意】不能把无穷小与很小的数混淆;零是可以作为无穷小的唯一的数,任何非零常量都不是无穷小。定义: 当在给定的下,无限增大,则称是下的无穷大,即。显然,时,都是无穷大量,【注意】不能把无穷大与很大的数混淆;无穷大是极限不存在的情形之一。无穷小与无穷大是相对的,在不同的极限形式下,同一个函数可能是无穷小也可能是无穷大,如 , ,所以当时为无穷小,当 时为无穷大。2无穷小与无穷大的关系:在自变量的同一变化过程中,如果为无穷大,则为无穷小;反之,如果为无穷小,且,则为无穷大。小结:无穷

11、大量、无穷小量的概念是反映变量的变化趋势,因此任何常量都不是无穷大量,任何非零常量都不是无穷小,谈及无穷大量、无穷小量之时,首先应给出自变量的变化趋势。3.无穷小与函数极限的关系:定理1 其中是自变量在同一变化过程(或)中的无穷小.证:(必要性)设令则有(充分性)设其中是当时的无穷小,则 【意义】(1)将一般极限问题转化为特殊极限问题(无穷小);(2)3.无穷小的运算性质定理2 在同一过程中,有限个无穷小的代数和仍是无穷小.【注意】无穷多个无穷小的代数和未必是无穷小. 定理3 有界函数与无穷小的乘积是无穷小.如:,推论1 在同一过程中,有极限的变量与无穷小的乘积是无穷小.推论2 常数与无穷小的

12、乘积是无穷小.推论3 有限个无穷小的乘积也是无穷小.二、无穷小的比较例如,观察各极限:不可比.极限不同, 反映了趋向于零的“快慢”程度不同.1定义: 设是自变量在同一变化过程中的两个无穷小,且 例1 证:例2 解2常用等价无穷小:(1); (2); (3); (4); (5); (6)(7) (8) (9)用等价无穷小可给出函数的近似表达式:例如3等价无穷小替换定理:证:例3 (1); (2) 解: (1) 故原极限= 8(2)原极限=例4 错解: =0正解: 故原极限【注意】和、差形式一般不能进行等价无穷小替换,只有因子乘积形式才可以进行等价无穷小替换。例5 解: 原式三、极限的简单计算1.

13、 代入法:直接将的代入所求极限的函数中去,若存在,即为其极限,例如;若不存在,我们也能知道属于哪种未定式,便于我们选择不同的方法。例如,就代不进去了,但我们看出了这是一个型未定式,我们可以用以下的方法来求解。2. 分解因式,消去零因子法例如,。3. 分子(分母)有理化法例如, 又如,4. 化无穷大为无穷小法例如,实际上就是分子分母同时除以这个无穷大量。由此不难得出又如,(分子分母同除)。再如,(分子分母同除)。5. 利用无穷小量性质、等价无穷小量替换求极限例如,(无穷小量乘以有界量)。又如,解:商的法则不能用由无穷小与无穷大的关系,得再如,等价无穷小量替换求极限的例子见本节例3例5。6. 利用两个重要极限求极限(例题参见1.4例3例5)7. 分段函数、复合函数求极限例如,解: 左右极限存在且相等, 【启发与讨论】思考题1:解: 无界

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 高等教育 > 习题/试题

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号