柴俊丁大公陈咸平等编科学出版社华东师范大学高等数学作业集答案解析Ch11Infiniteseries

上传人:博****1 文档编号:492387209 上传时间:2022-09-25 格式:DOC 页数:14 大小:767KB
返回 下载 相关 举报
柴俊丁大公陈咸平等编科学出版社华东师范大学高等数学作业集答案解析Ch11Infiniteseries_第1页
第1页 / 共14页
柴俊丁大公陈咸平等编科学出版社华东师范大学高等数学作业集答案解析Ch11Infiniteseries_第2页
第2页 / 共14页
柴俊丁大公陈咸平等编科学出版社华东师范大学高等数学作业集答案解析Ch11Infiniteseries_第3页
第3页 / 共14页
柴俊丁大公陈咸平等编科学出版社华东师范大学高等数学作业集答案解析Ch11Infiniteseries_第4页
第4页 / 共14页
柴俊丁大公陈咸平等编科学出版社华东师范大学高等数学作业集答案解析Ch11Infiniteseries_第5页
第5页 / 共14页
点击查看更多>>
资源描述

《柴俊丁大公陈咸平等编科学出版社华东师范大学高等数学作业集答案解析Ch11Infiniteseries》由会员分享,可在线阅读,更多相关《柴俊丁大公陈咸平等编科学出版社华东师范大学高等数学作业集答案解析Ch11Infiniteseries(14页珍藏版)》请在金锄头文库上搜索。

1、 第11章 无穷级数参考解答1、根据级数收敛与发散的定义判别下列级数的敛散性: (1) 解:,故原级数收敛。(2) 解:,故原级数发散。2、用比较审敛法判别下列级数的敛散性: (1) 解:,而级数收敛,故原级数收敛。(2) 解:,而级数发散,故原级数发散。(3) 解:,而级数收敛,故原级数收敛。(4)解:,而级数收敛,故原级数收敛。(利用极限,或)(5)解:,而级数发散,故原级数发散。3、用比值审敛法判别下列级数的敛散性: (1) 解:,故原级数收敛。(2) 解:,故原级数发散。(3) 解:,故原级数收敛。(4)解:,故原级数收敛。(利用极限)4、用根值审敛法判别下列级数的敛散性: (1) 解

2、:,故原级数收敛。(2) 解:,故原级数收敛。(3) 解:,故原级数收敛。5、判别下列级数是否收敛,若收敛,是绝对收敛还是条件收敛: (1) 解:,且,故原级数为Leibniz型交错级数。但因,而发散,故发散。因此,原级数条件收敛。(2) 解:,且,故原级数为Leibniz型交错级数。但因,而收敛,故收敛。因此,原级数绝对收敛。(3)(即) 解:,且,故原级数为Leibniz型交错级数。但因发散,故原级数条件收敛。(4)解:考察函数,因时, ,故函数在上单调下降。由此可知,当时,且易知,故原级数为Leibniz型交错级数。但因,而发散,故发散。因此,原级数条件收敛。6、求下列幂级数的收敛区间:

3、 (1)解:,故得。时,级数为;时,级数为,上述级数均收敛,故原幂级数的收敛区间为。(2)解:,故得。时,级数为,此系Leibniz型交错级数;时,级数为,此系调和级数。故原幂级数的收敛区间为。(3)解:原幂级数即为,此为缺项幂级数。因,故由,得。时,级数均成为,发散。故原幂级数的收敛区间为。(4)解:,故得。时,级数为,发散;时,级数为,系Leibniz型交错级数。故原幂级数的收敛区间为。(5)解:,故得,原幂级数的收敛区间为。7、利用逐项求导或逐项积分求下列幂级数的和函数: (1)解:,故得。时,相应的级数均发散(一般项不趋于零)。故幂级数的收敛区间为。设,则,故得,。(2)解:,故得。时

4、,相应的级数均发散。故幂级数的收敛区间为。设,则当时,有。当时,但,故得,于是得,。因此,所求幂级数之和函数为(3)解:,故得。时,相应的级数为,因,而发散,故发散。时,相应的级数为,为Leibniz型交错级数。故幂级数的收敛区间为。设,则当时,有。当时,其中,。因,故得,于是因此,所求幂级数之和函数为8、将下列函数展开成x的幂级数,并求展开式成立的区间: (1) ()(2) ()(3) ()(4) ()(5) ()(6) 解:设,则 () () ()(7) 解:, (8) 解:, 9、将下列函数展开成的幂级数,并求展开式成立的区间: (1) (2) ()10、求级数的和。 解:先求幂级数的和

5、函数。易知其收敛区间为。设 则当时,其中,。因,故得,于是所求级数的和即为。11、设,试将展成x的幂级数,并求级数之和。解:当时, 因,故得。1213、略。14、设,其中(),求解:因为所给Fourier级数为余弦级数,故先将偶延拓到上,即然后将延拓成这个实数轴上的以2为周期的函数。于是,根据Dirichlet收敛条件,得注:周期的大小可从公式看出。15-16、略。(第15题课上已介绍)17、判别下列级数之敛散性:(1)解:因(Taylor公式),故所求极限为1,故原级数收敛。(2)解:1 ,但级数收敛,故原级数收敛。2 ,但级数发散,故原级数发散。18、设收敛,且,证明收敛。证明:因收敛,故部分和数列收敛,即存在;又,故因此,极限存在,从而知收敛。19、设在点的某一邻域内具有二阶连续导数,且,证明级数绝对收敛。证明:因,在点连续,故知。于是故由Taylor公式,(其中),从而得。于是,但级数收敛,故原级数绝对收敛。20、设幂级数的收敛半径为3,求幂级数的收敛区间。解:故所求收敛区间为。21、将函数展成x的幂级数,并指明收敛域,利用展开式求级数的和。解:, 另一方面,故得 令,得,从而得。22、设,试将它展开成以2为周期的Fourier级数,并用它来求。 解:,故所求Fourier级数为 令,得,即,故得。如有错误,敬请指正;如有疑问,欢迎讨论!

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 医学/心理学 > 基础医学

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号