二次函数与四边形的动点问题

上传人:cl****1 文档编号:492021186 上传时间:2023-01-23 格式:DOC 页数:20 大小:1.15MB
返回 下载 相关 举报
二次函数与四边形的动点问题_第1页
第1页 / 共20页
二次函数与四边形的动点问题_第2页
第2页 / 共20页
二次函数与四边形的动点问题_第3页
第3页 / 共20页
二次函数与四边形的动点问题_第4页
第4页 / 共20页
二次函数与四边形的动点问题_第5页
第5页 / 共20页
点击查看更多>>
资源描述

《二次函数与四边形的动点问题》由会员分享,可在线阅读,更多相关《二次函数与四边形的动点问题(20页珍藏版)》请在金锄头文库上搜索。

1、二次函数与四边形一二次函数与四边形的形状A两点(A点在B点左侧),直线与抛物线交于A、C两点,其中C点的横坐标为2(1)求A、B 两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平 行线交抛物线于E点,求线段PE长度的最大值;(3)点G是抛物线上的动点,在x轴上是否存有点F, 使A、C、F、G这样的四个点为顶点的四边形是 平行四边形?如果存有,求出所有满足条件的F 点坐标;如果不存有,请说明理由B(0,4)A(6,0)EFO练习1.(河南省实验区) 23如图,对称轴为直线的抛物线经过点A(6,0)和 B(0,4)(1)求抛物线解析式及顶点坐标;(2)设点E(,)

2、是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形求平行四边形OEAF的面积S与之间的函数关系式,并写出自变量的取值范围; 当平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形? 是否存有点E,使平行四边形OEAF为正方形?若存有,求出点E的坐标;若不存有,请说明理由练习2.(四川省德阳市)25.如图,已知与轴交于点和的抛物线的顶点为,抛物线与关于轴对称,顶点为(1)求抛物线的函数关系式;(2)已知原点,定点,上的点与上的点始终关于轴对称,则当点运动到何处时,以点为顶点的四边形是平行四边形?(3)在上是否存有点,使是以为斜边且一个角为的直角三角形?若

3、存,求出点的坐标;若不存有,说明理由1234554321练习3.(山西卷)如图,已知抛物线与坐标轴的交点依次是,(1)求抛物线关于原点对称的抛物线的解析式;(2)设抛物线的顶点为,抛物线与轴分别交于两点(点在点的左侧),顶点为,四边形的面积为若点,点同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点,点同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点与点重合为止求出四边形的面积与运动时间之间的关系式,并写出自变量的取值范围;(3)当为何值时,四边形的面积有最大值,并求出此最大值;(4)在运动过程中,四边形能否形成矩形?若能,求出此时的值;若不能,请说明理由二二次函数

4、与四边形的面积例1.(资阳市)25.如图10,已知抛物线P:y=ax2+bx+c(a0) 与x轴交于A、B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC上,抛物线P上部分点的横坐标对应的纵坐标如下:x-3-212y-4-0图10(1) 求A、B、C三点的坐标;(2) 若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围;(3) 当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=kDF,若点M不在抛物线P上,求k的取值范围. 练习1.(辽宁省十二市2007年第26题)如图,平面直

5、角坐标系中有一直角梯形OMNH,点H的坐标为(8,0),点N的坐标为(6,4)(1)画出直角梯形OMNH绕点O旋转180的图形OABC,并写出顶点A,B,C的坐标(点M的对应点为A, 点N的对应点为B, 点H的对应点为C);(2)求出过A,B,C三点的抛物线的表达式; (3)截取CE=OF=AG=m,且E,F,G分别在线段CO,OA,AB上,求四边形BEFG的面积S与m之间的函数关系式,并写出自变量m的取值范围;面积S是否存有最小值?若存有,请求出这个最小值;若不存有,请说明理由;(4)在(3)的情况下,四边形BEFG是否存有邻边相等的情况,若存有,请直接写出此时m的值,并指出相等的邻边;若不

6、存有,说明理由 练习3.(吉林课改卷)如图,正方形的边长为,在对称中心处有一钉子动点,同时从点出发,点沿方向以每秒的速度运动,到点停止,点沿方向以每秒的速度运动,到点停止,两点用一条可伸缩的细橡皮筋联结,设秒后橡皮筋扫过的面积为BCPODQABPCODQA(1)当时,求与之间的函数关系式;(2)当橡皮筋刚好触及钉子时,求值;(3)当时,求与之间的函数关系式,并写出橡皮筋从触及钉子到运动停止时的变化范围;(4)当时,请在给出的直角坐标系中画出与之间的函数图象练习4.(四川资阳卷)如图,已知抛物线l1:y=x2-4的图象与x轴相交于A、C两点,B是抛物线l1上的动点(B不与A、C重合),抛物线l2

7、与l1关于x轴对称,以AC为对角线的平行四边形ABCD的第四个顶点为D.(1) 求l2的解析式;(2) 求证:点D一定在l2上;(3) ABCD能否为矩形?如果能为矩形,求这些矩形公共部分的面积(若只有一个矩形符合条件,则求此矩形的面积);如果不能为矩形,请说明理由. 注:计算结果不取近似值.三二次函数与四边形的动态探究例1.(荆门市)28. 如图1,在平面直角坐标系中,有一张矩形纸片OABC,已知O(0,0),A(4,0),C(0,3),点P是OA边上的动点(与点O、A不重合)现将PAB沿PB翻折,得到PDB;再在OC边上选择适当的点E,将POE沿PE翻折,得到PFE,并使直线PD、PF重合

8、(1)设P(x,0),E(0,y),求y关于x的函数关系式,并求y的最大值;(2)如图2,若翻折后点D落在BC边上,求过点P、B、E的抛物线的函数关系式;(3)在(2)的情况下,在该抛物线上是否存有点Q,使PEQ是以PE为直角边的直角三角形?若不存有,说明理由;若存有,求出点Q的坐标图1图2例2.(2007年沈阳市第26题)、已知抛物线yax2bxc与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OBOC)是方程x210x160的两个根,且抛物线的对称轴是直线x2(1)求A、B、C三点的坐标;(2)求此抛物线的表达式;(3)连接AC、B

9、C,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EFAC交BC于点F,连接CE,设AE的长为m,CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;(4)在(3)的基础上试说明S是否存有最大值,若存有,请求出S的最大值,并求出此时点E的坐标,判断此时BCE的形状;若不存有,请说明理由例3.(湖南省郴州) 27如图,矩形ABCD中,AB3,BC4,将矩形ABCD沿对角线A平移,平移后的矩形为EFGH(A、E、C、G始终在同一条直线上),当点E与C重时停止移动平移中EF与BC交于点N,GH与BC的延长线交于点M,EH与DC交于点P,FG与DC的延长线交于点Q设S表

10、示矩形PCMH的面积,表示矩形NFQC的面积(1) S与相等吗?请说明理由(2)设AEx,写出S和x之间的函数关系式,并求出x取何值时S有最大值,最大值是多少?(3)如图11,连结BE,当AE为何值时,是等腰三角形 图11图10练习1.(07年河池市)如图12, 四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4) 点从出发以每秒2个单位长度的速度向运动;点从同时出发,以每秒1个单位长度的速度向运动其中一个动点到达终点时,另一个动点也随之停止运动过点作垂直轴于点,连结AC交NP于Q,连结MQ (1)点 (填M或N)能到达终点;(2)求AQM的面积S与运动时间t的函数关系式,并写出

11、自变量t的取值范围,当t为何值时,S的值最大;图12(3)是否存有点M,使得AQM为直角三角形?若存有,求出点M的坐标,若不存有,说明理由练习2.(江西省) 25实验与探究(1)在图1,2,3中,给出平行四边形的顶点的坐标(如图所示),写出图1,2,3中的顶点的坐标,它们分别是, , ;图1图2图3(2)在图4中,给出平行四边形的顶点的坐标(如图所示),求出顶点的坐标(点坐标用含的代数式表示);图4归纳与发现(3)通过对图1,2,3,4的观察和顶点的坐标的探究,你会发现:无论平行四边形处于直角坐标系中哪个位置,当其顶点坐标为(如图4)时,则四个顶点的横坐标之间的等量关系为 ;纵坐标之间的等量关

12、系为 (不必证明);使用与推广(4)在同一直角坐标系中有抛物线和三个点,(其中)问当为何值时,该抛物线上存有点,使得以为顶点的四边形是平行四边形?并求出所有符合条件的点坐标答案:一二次函数与四边形的形状例1.解:(1)令y=0,解得或A(-1,0)B(3,0);将C点的横坐标x=2代入得y=-3,C(2,-3)直线AC的函数解析式是y=-x-1 (2)设P点的横坐标为x(-1x2)则P、E的坐标分别为:P(x,-x-1), E(P点在E点的上方,PE=当时,PE的最大值=(3)存有4个这样的点F,分别是B(0,4)A(6,0)EFO练习1.解:(1)由抛物线的对称轴是,可设解析式为把A、B两点

13、坐标代入上式,得 解之,得故抛物线解析式为,顶点为(2)点在抛物线上,位于第四象限,且坐标适合,y0,y表示点E到OA的距离OA是的对角线,因为抛物线与轴的两个交点是(1,0)的(6,0),所以,自变量的取值范围是16 根据题意,当S = 24时,即化简,得 解之,得故所求的点E有两个,分别为E1(3,4),E2(4,4)点E1(3,4)满足OE = AE,所以是菱形;点E2(4,4)不满足OE = AE,所以不是菱形 当OAEF,且OA = EF时,是正方形,此时点E的坐标只能是(3,3) 而坐标为(3,3)的点不在抛物线上,故不存有这样的点E,使为正方形1234554321练习2.解:(1)由题意知点的坐标为设的函数关系式为又点在抛物线上,解得抛物线的函数关系式为(或)(2)与始终关于轴对称, 与轴平行设点的横坐标为,则其纵坐标为,即当时,解得当时,解得当点运动到或或或时,以点为顶点的四边形是平行四边形(3)满足条件的点不存有理由如下:若存有满足条件的点在上,则,(或),123554321过点作于点,可得,点的坐标为但是,当时,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 资格认证/考试 > 自考

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号