植物生理学复习重点整理~山东农业大学

上传人:新** 文档编号:491560988 上传时间:2023-07-14 格式:DOC 页数:31 大小:379.50KB
返回 下载 相关 举报
植物生理学复习重点整理~山东农业大学_第1页
第1页 / 共31页
植物生理学复习重点整理~山东农业大学_第2页
第2页 / 共31页
植物生理学复习重点整理~山东农业大学_第3页
第3页 / 共31页
植物生理学复习重点整理~山东农业大学_第4页
第4页 / 共31页
植物生理学复习重点整理~山东农业大学_第5页
第5页 / 共31页
点击查看更多>>
资源描述

《植物生理学复习重点整理~山东农业大学》由会员分享,可在线阅读,更多相关《植物生理学复习重点整理~山东农业大学(31页珍藏版)》请在金锄头文库上搜索。

1、 .wd.内容提要第一章 植物水分代谢一、名词解释:水势:决定细胞间水分移动的能量渗透势:开放体系中溶液的水势叫做渗透势,它是水中由于溶质的存在而降低的水势压力势:由于外界压力存在而是水势增加的值,它是正值衬质势:由于亲水物质存在而降低的水势水孔蛋白水通道蛋白:细胞膜上存在蛋白质组成的对水分特异的通透孔道根压:植物根系生理活动促使水分从根部上升的压力蒸腾拉力:由于蒸腾作用产生一系列水势梯度使导管中水分上升的力量蒸腾效率:植物在一定生长期内所积累的干物质与蒸腾失水量之比蒸腾系数需水量:植物在一定生长时期内的蒸腾失水量与积累的干物质量之比水分利用效率:植物每消耗单位水量生产干物质的量水分临界期:植

2、物一生中对水分亏缺最敏感,最容易受水分亏缺伤害的时期自由水:距胶粒较远,能自由移动的水分, 参与各种代谢活动。束缚水:靠近胶粒并被严密吸附而不易流动 的水分,与植物抗性有关。渗透作用:水分通过选择透性膜从高水势向低水势 移动的现象二、自由水与束缚水:通常以自由水/束缚水的比值做为衡量植物代谢强弱和植物抗逆性大小的指标之一。自由水/束缚水比值高, 植物代谢强度大;自由水/束缚水比值低, 植物抗逆性强。自由水参与各种代谢活动,自由水含量越高,植物的代谢越旺盛。束缚水不参与代谢活动,束缚水含量越高,植物代谢活动越弱,越冬植物的休眠芽和枯燥种子所含的水 根本上是束缚水,这时的植物以微弱的代谢活动度过不

3、良的环境条件。三、植物细胞的水势:典型植物细胞水势由三局部组成,由渗透势S,压力势P和衬质势m构成。即W=S+P+m;S是由于液泡中溶有各种溶质而造成的;P是由于外界压力存在而使水势增加的值,它是正值。当细胞发生质壁别离时,P为零。处在强烈蒸发环境中的细胞P会成负值;细胞的m是由细胞内的亲水胶体对水分的吸附造成的。干种子萌发前的吸水就是靠吸胀作用,分生组织中刚形成的幼嫩细胞,主要也是靠吸胀作用吸水。未形成液泡的细胞具有一定的衬质势。但当液泡形成后,细胞内的亲水胶体已被水分饱和,其衬质势已与液泡的渗透势到达平衡,所以成熟细胞的水势表示为WSP。现代水势的概念:每偏摩尔体积水的化学势与纯水化学势之

4、差。w=(w-wo)/Vw植物细胞吸水主要由两种形式,一种是渗透性吸水,一种是吸胀性吸水。未形成液泡的细胞靠吸胀性吸水,形成液泡的成熟细胞主要靠渗透性吸水。四、植物细胞是一个渗透系统:植物细胞具备了构成渗透系统的条件。一个成长的植物细胞壁对水分和溶质都是可以自由通透的。但细胞壁以内的质膜和液泡膜却是一种选择透性膜,它把液泡中的溶液与环境中的溶液隔开,如果液泡的水势与环境水势存在水势差,水分便会在环境和液泡之间发生渗透作用。质壁别离现象说明了生活细胞的原生质具有选择透性。细胞死后,原生质层的构造被破坏,丧失了选择透性。可以用质壁别离现象来鉴定细胞的死活,还可用来测定细胞的渗透势等。五、水分的移动

5、:水分进出细胞取决于细胞与其外界的水势差。相邻细胞间的水分移动同样取决于相邻细胞间的水势差。水分总是从水势高的一端流向水势低的一端。植物组织和器官间的水分移动也符合这个规律。水分跨膜运转与水通道蛋白细胞膜是由两层膜脂分子和蛋白质严密排列而成,而水分子是极性很强的不溶于脂类的分子,水分无法单靠通过穿越脂质的扩散实现快速跨膜运转。细胞膜上存在由蛋白质组成的对水分特异的通透孔道,为膜内蛋白, 定义为水通道蛋白,也称为水孔蛋白aquaporin,水通道蛋白只允许水分子通过,不允许离子和代谢物通过。水通道跨膜运输水分的能力可以被磷酸化和水通道蛋白的合成速度所调节,在水通道蛋白的氨基酸残基上加上或除去磷酸

6、就可以改变其对水的通透性,从而调节细胞膜对水分的通透性。由于水孔蛋白的存在,它能使水分快速透过膜脂双层,调控水分快速进出细胞。六、根系吸水的机理:根系吸水分为主动吸水和被动吸水两种方式。1、根压与主动吸水:由于根系生理活动引起的水分吸收称为主动吸水。植物根系生理活动促使水分从根部上升的压力称为根压,根压的存在可以通过伤流和吐水两种现象证明。根系主动吸水过程中如何建设跨内皮层的水势梯度或根压产生的机制、根压产生的渗透机制、为什么导管内的水势低于外液的水势土壤溶液中的水分可以在内皮层以外的质外体中自由扩散,但当扩散到内皮层时便被凯氏带挡住,水分要进入中柱,只有通过内皮层的原生质,整个内皮层细胞就象

7、一圈选择透性膜把中柱与皮层隔开,只要中柱中的水分与皮层中的水分存在水势差,水分便会通过渗透作用进出中柱。问题在于植物怎样使中柱中的水势低于皮层的水势。根系皮层的薄壁细胞利用呼吸产生的能量,主动地吸收土壤和质外体中的离子,并将吸收的离子通过胞间联丝主动转运至内皮层内的中柱中去。使导管中的离子浓度升高,水势降低。这样就建设了一个跨越内皮层的水势梯度,水分就会通过渗透作用进入中柱,产生根压。主动吸水实际上并不是根系直接主动吸收水分,而是根系利用代谢能量主动吸收外界的矿质,造成导管内水势低于外界水势,而水则是自发地顺水势梯度从外部进入导管。水分吸收的真正动力是水势差。如何用实验证明植物根系存在主动吸水

8、过程主动吸水与呼吸速率密切相关。良好的通气条件及呼吸促进剂能促进植物的伤流,而抑制呼吸的因素如呼吸抑制剂、低温、缺氧等,均能降低植物的伤流。2、被动吸水是由于枝叶蒸腾引起的根部吸水,吸水的动力来自于蒸腾拉力。与植物根的代谢活动无关。用高温或化学药剂将植物的根杀死,植物照样从环境中吸水。由于蒸腾作用产生一系列水势梯度使导管中水分上升的力量称为蒸腾拉力。七、蒸腾作用与气孔运动:植物进化过程中形成的气孔运动有何意义蒸腾和CO2同化都是通过气孔进展的,这就形成了一对矛盾,植物既要多吸收CO2,又要减少水分损失。植物在长期进化中形成了一种机制,即在最有利CO2快速同化时气孔张开;在最有利于水分快速散失时

9、气孔关闭。现道气孔运动是一种膨压运动,由保卫细胞调节。保卫细胞具有整套细胞器。与其它表皮细胞明显不同的是保卫细胞含有叶绿体,在光下能进展光合作用。尤其指出的是,保卫细胞中含有相当多的淀粉体,在光下淀粉减少,在黑暗中淀粉积累,这与正常的叶肉细胞恰好相反。1气孔运动的机理:目前得到较多实验支持的是“蓝光信号K蔗糖机制:蓝光信号调控气孔运动:光是影响气孔运动的最主要的环境因子之一,正常条件下大多数植物的气孔总是在光下张开、黑暗中关闭。保卫细胞存在光受体,能感受蓝光信号。蓝光通过光受体可以激活质膜上的H+-ATP酶,将胞内的质子泵出胞外,建设跨膜的质子电动势pmf,这种跨膜的质子电动势驱动保卫细胞外面

10、K通过质膜上的内向K通道进入保卫细胞,这是一种K的主动运输机制。K的进入降低了保卫细胞的水势而吸水,通过膨压运动使气孔开启。这是光诱导气孔开放的主要效应。K、苹果酸与气孔运动:在照光下,保卫细胞质膜上的H- ATP酶做功,将H从保卫细胞内排到细胞外,建设跨膜的质子电动势,驱动保卫细胞外面K通过质膜上的内向K通道进入保卫细胞,在K进入保卫细胞的同时,还伴随着负电荷Cl进入,进一步降低了保卫细胞的水势,促进吸水使气孔张开。Cl是通过Cl- K 共转运载体进入保卫细胞的。与K交换的H来自苹果酸,在照光下,保卫细胞pH升高活化了淀粉磷酸化酶,导致淀粉水解成磷酸葡萄糖,葡萄糖经糖酵解途径转变成PEP,光

11、下由PEP羧化酶催化PEP与CO2反响,形成草酰乙酸并转变成苹果酸,苹果酸解离成酸根和2个H,在H/K离子泵的驱动下,H与K进展交换,而苹果酸根离子则进入保卫细胞的液泡内,和Cl 共同与进来的K 保持电化学的平衡,同时也可降低保卫细胞的水势。所以K的进入和苹果酸的形成共同造成保卫细胞水势的下降,导致气孔张开。蔗糖与气孔运动:连续观测气孔在一天中的变化发现,当气孔在上午逐渐开放时,保卫细胞内K含量逐渐升高,但是下午较早时,当气孔导度仍然在增加时,K含量却已经开场下降了,而在K含量逐渐下降的过程中,蔗糖的含量却在逐渐增加,成为保卫细胞内的主要渗透调节物质,当气孔在下午较晚关闭时,蔗糖的含量也随着下

12、降。这个结果说明,气孔的张开与K的吸收有关,而气孔开放的维持和气孔关闭则与蔗糖浓度的变化有关。2、影响气孔运动与蒸腾的环境因素主要有:光照、CO2、水分状况、叶温等。光照:除CAM植物以外,气孔一般昼开夜闭。照光促进气孔张开。蓝光对气孔开放的诱导作用比红光更为有效。蓝光通过光受体可以激活质膜上的H+-ATP酶,建设跨膜的质子电动势,驱动K进入保卫细胞使气孔开启。CO2:一般来讲,CO2含量减少时气孔张开,而当CO2浓度增加时气孔便关闭。气孔会对细胞间隙CO2浓度Ci升高做出响应而关闭,以减少不必要的水分散失;而当Ci下降时,便促进气孔张开,加速CO2向叶肉中的扩散速度以维持较高的光合速率。水分

13、状况:水分状况是直接影响气孔运动的关键条件。由于叶片蒸腾导致叶肉细胞和保卫细胞水势下降,进而引起气孔关闭的过程称为气孔的反响调节;而在叶片水势尚未降低之前,气孔便能感知到空气湿度下降叶片-大气水气压亏缺VPD和土壤水分亏缺的信号而提前关闭,减少蒸腾失水,气孔的这种功能称之为前馈调节。现道,受旱根系产生信号物质ABA运到地上局部导致气孔关闭。叶温:气孔导度一般随温度的上升而增大,在30左右达最大值。35以上的高温会使气孔导度变小,很多植物的气孔在高温低湿的中午开场关闭。近于0的低温,即使其它条件都适宜,气孔也不张开。总之,植物的气孔导度对环境因素变化响应的结果,是通过调节气孔在适当时刻的开关,尽

14、可能减少水分损失,而保证最大的CO2同化量,使全天的水分利用效率到达最高。有人把气孔的这种行为称为气孔的最优化调节。为什么说CO2是一种最好的抗蒸腾剂一般来讲,CO2含量减少时,气孔张开;而当CO2浓度增加时气孔便关闭。提高CO2浓度既可使气孔关闭,减少蒸腾,又不会限制光合作用。因为气孔导度减少对CO2造成的扩散阻力,会被CO2浓度增加所促进的扩散速率所抵消。此外,CO2还能抑制光呼吸,增加光合产物的净积累。八、植物需水量及水分利用效率:需水量就是指植物的蒸腾系数。不同类型的植物、同种植物的不同生育期需水量是不同的。C4植物的需水量低于C3植物的需水量。光合效率越高的植物,需水量就越低。植物的

15、需水量不等于灌水量,因为灌水不仅要满足生理用水,还要满足生态用水等。水分利用效率笼统地讲是指植物每消耗单位水量生产干物质的量或同化CO2的量,可分为三个层次:植物瞬时水分利用效率是某一时刻光合速率与蒸腾速率之比,即某一时刻的蒸腾效率;植物长期水分利用效率指一定时间内植物积累干物质量与蒸腾失水量之比,是指较长一段时间的蒸腾效率;农田水分利用效率指一定时间内植物积累的干物质与植物蒸腾失水和田间蒸发失水量之和蒸发蒸腾量之比。第二章 植物的矿质营养一、名词解释:电化学势梯度离子载体 离子通道 离子泵 离子转运蛋白 原初主动转运 次级主动转运 共转运 质子动力势pmf 单盐毒害 离子拮抗 再利用元素 植物营养最大效率期 营养临界期 NR二、植物必需的元素及其确定方法:所谓植物的必需元素是指植物正常生长发育必不可少的元素。植物必需元素必须具备三条标准:不可缺少性,植物如果缺乏这种元素就不能正常生长发育,甚至不能完成其生活史。不可替代性,植物缺乏该元素就会呈现出特有的缺乏症,且这种缺乏症只有参加该元素后才能预防或恢复。直接功能性,该元素对植物生长发育的影响必须是该元素直接作用的效果,而不是通过改变植物生长的环境条件如土壤

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 行业资料 > 国内外标准规范

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号