材料科学与工程基础

上传人:壹****1 文档编号:490324669 上传时间:2022-07-22 格式:DOC 页数:16 大小:3.08MB
返回 下载 相关 举报
材料科学与工程基础_第1页
第1页 / 共16页
材料科学与工程基础_第2页
第2页 / 共16页
材料科学与工程基础_第3页
第3页 / 共16页
材料科学与工程基础_第4页
第4页 / 共16页
材料科学与工程基础_第5页
第5页 / 共16页
点击查看更多>>
资源描述

《材料科学与工程基础》由会员分享,可在线阅读,更多相关《材料科学与工程基础(16页珍藏版)》请在金锄头文库上搜索。

1、 材料科学与工程基础 科目: 材料科学与工程基础 学院: 材料科学与工程学院 专业: 2010级材料化学 学号: 41007324 姓名: 喻 俊 陕 西 师 范 大 学 材料科学与工程学院 2012年12月06日影响物质结构变化的因素 ( 陕西师范大学 材料科学与工程学院 陕西 西安 710062 )摘要 众所周知,物质的结构决定其性质,性质决定其用途。而性质就是其特征,是能够通过一定的手段或方法能够让其表现出来的。那么其特征也只能在特定条件下才能表现出来的,可以想象,当改变某些因素,一旦物质的微观结构发生变化,则其性质很有可能也会变化。晶体结构的改变意味着材料发生了相变,相变过程一般由相变

2、热力学与相变动力学控制,在热力学中,相吉布斯自由能决定该相的稳性,GibbS自由能越小,该相的稳定性就越大,在一定条件下越不易发生变化。本文就是从这里入手,来探讨影响物质结构变化的因素。关键词 物质结构 晶体 温度 压强 磁场 应力一、什么是物质的结构?结构是物质赖以存在的基本方式,是物质固有的基本属性。结构亦是物质不可分离的基本存在方式和属性,世界上的任何事物都是具有结构的。从宏观世界到微观世界,从自然界到人类社会,从无机物到有机物,从实物形态到场形态。从微观化学角度最直接最简单的表述就是指物质的最小组成微粒(原子、粒子)在空间或几何的排列方式。二、物质结构对于物质性质究竟起什么作用呢?用最

3、简单的一句话说就是“物质结构决定了物质的性质”。在物质结构中有三个主要因素:基本点的性质、基本点的数量、基本点的配合方式,前者是指事物“由什么构成”,后两者是指“怎样构成”。因此,既然物质的结构会影响到其性质,要改变其性质,就必须从改变它的结构入手。三、哪些因素会影响到物质的结构呢? 物质一般表现出来的大都是体系能量最低的稳定态结构,还有部分则表现不稳态或亚稳态的结构。一旦某些因素改变,就会微粒(原子、分子或离子)在原来的结构中产生扩散运动或改变原有的结合方式,从而发生稳态结构和物质结构的变化。微观因素影响结构:晶体中质点的堆积、结构单位的数目、原子核和强相互作用力、各组分间的相互作用、质点的

4、相对大小、电子浓度、缺陷、原子有序/无序、极化作用、多元体系中各组元的化学势不同、配位数与配位多面体、离子缺失等等,而且各种因素相互之间的影响也十分复杂。宏观条件影响微观结构:温度、压强、场(电/磁)、环境应力等变化引起物质结构的改变。四、为什么不同结构表现出不同的物理、化学性质?不同物质具有不同化学性质和物理性质,这就是自然界中个体的独立性,即特性。不同的物质,其化学结构的组成是不同的,这就造就了其物理性质和化学性质不同的原因,进一步表现出不同的抗压、柔性、刚性、消光及其他性质。如同补钙剂中的主要成分碳酸钙在岩石中也能够找到的原因,碳的单质在自然界有3 种(金刚石,碳60,黑炭),元素都相同

5、,因为他们的化学组成结构不同,致使其化学结构的不同。可能影响物质结构变化的因素:温度对晶体结构的影响 温度导致相变的原因:原子的热运动是其固有性质,热振幅是温度的函数当温度足够高时,原子离开其平衡位置从而发生相变。从热力学角度来说,Gibbs自由能变小,属于自发反应。温度导致的相变(配位数减小、比重降低、体积增加、对称性增高)。 不同温度条件下Na4Ca (SO4)3 复盐的SEM 照片 Pseudocubic sub-cell parameters for CaTiO3在不同温度下的空间结构 Ca0.6Sr0.4TiO3 as a function of temperature钛酸钡(BaT

6、iO3)晶体及其结构变化 钛酸钡是一致性熔融化合物,其熔点为1618。在此温度以下,1460以上结晶出 来的钛酸钡属于非铁电的六方晶系6/mmm点群。此时,六方晶系是稳定的。在1460130之间钛酸钡转变为立方钙钛矿型结构。在此结构中Ti4+(钛离子)居于O2-(氧离子)构成的氧八面体中央,Ba2+(钡离子)则处于八个氧八面体围成的空隙中(见右图)。此时的钛酸钡晶体结构对称性极高,因此无偶极矩产生,晶体无铁电性,也无压电性。随着温度下降,晶体的对称性下降。当温度下降到130时,钛酸钡发生顺电-铁电相变。在1305的温区内,钛酸钡为四方晶系4mm点群,具有显著地铁电性,其自发极化强度沿c轴方向,

7、即001方向。钛酸钡从立方晶系转变为四方晶系时,结构变化较小。从晶胞来看,只是晶胞沿原立方晶系的一轴(c轴)拉长,而沿另两轴缩短。当温度下降到5以下,在5-90温区内,钛酸钡晶体转变成正交晶系mm2点群,此时晶体仍具有铁电性,其自发极化强度沿原立方晶胞的面对角线011方向。为了方便起见,通常采用单斜晶系的参数来描述正交晶系的单胞。这样处理的好处是使我们很容易地从单胞中看出自发极化的情况。钛酸钡从四方晶系转变为正交晶系,其结构变化也不大。从晶胞来看,相当于原立方晶系的一根面对角线伸长了,另一根面对角线缩短了,c轴不变。 当温度继续下降到-90以下时,晶体由正交晶系转变为三斜晶系3m点群,此时晶体

8、仍具有铁电性,其自发极化强度方向与原立方晶胞的体对角线111方向平行。钛酸钡从正交晶系转变成三斜晶系,其结构变化也不大。从晶胞来看,相当于原立方晶胞的一根体对角线伸长了,另一根体对角线缩短了。综上所述,在整个温区(1618),钛酸钡共有五种晶体结构,即六方、立方、四方、单斜、三斜,随着温度的降低,晶体的对称性越来越低。在130(即居里点)以上,钛酸钡晶体呈现顺电性,在130以下呈现铁电性。 BaTiO3晶体结构 晶 相 转 变BaTiO3晶型转变与温度的关系: 183K 278K 393K 1733K三方单斜四方立方六方在这五种晶相中,前三种是位移式转变,后一种是重构式转变。压力(强)对晶体结

9、构的影响压力(强)导致相变的原因 在一定条件下,压强通过对物质进行压力作用后,使组成物质的分子或原子的在平面或空间的排列顺序发生改变,因而表现出物质在某种特定的条件下有一定的承受力。其次,在高压下,随着压力的增加,晶体中尤其是氧化物及硅酸盐中阳离子会发生从低配位数多面体向高配位数的多面体的迁移,这种迁移是由于改变压力对阴阳离子半径比值改变所致所导致的结果。(压力对晶面间距变化、晶格指数变化、溶质扩散对晶粒细化影响) 硬玉结构随压力的改变 不同压力对不同晶体结构的影响掺杂对晶体结构的影响掺杂影响物质结构的原因 掺杂能够改变物质(晶体)结构的缺陷、空穴、离子电荷及配位数等,从而会表现出特殊的性质,

10、从微观上看,是改变了物质的结构。(1)T i4+离子掺杂对L i3V2( PO4) 3晶体结构与性能的影响 L i3- 2x( V 1- x T ix)2( P O4)3 的XRD图 掺杂物质前后的水滑石试样的XRD图谱 反应瞬间后所得水滑石试样的TEM形貌照片及其TEM电子衍射结果 不同掺杂元素(量)对不同晶体结构的影响(2)VO2 的相变原理及影响相变的因素磁场对晶体结构的影响磁场影响物质结构的原因 聚合物在熔融状态下易受外磁场的作用而产生诱导偶极,结晶时与未经磁场作用的分子链有不同的构象。静磁场使聚合物球晶沿磁场方向被拉长, 趋于定向结晶, 在外磁场的/ 牵引的影响下, 结晶区前沿形成。

11、此外,极化作用使辐射状片晶由扭曲生长变为伸直生长,消光环消失, 同时静磁场对聚合物成核有抑制作用,使其成核率降低而球晶尺寸增大。交变磁场对球晶形貌无显著影响, 辐射状片晶由扭曲生长变为伸直生长, 消光环消失, 同时交变磁场对聚合物的结晶过程有电磁搅拌作用,使成核率增高而球晶尺寸减小。由于各相磁化率及介电常数不同,在相变过程中施加磁场,磁场会影响各相Gibbs自由能的大小,进而影响相稳定性。磁场也会影响相变动力学,改变具有不同磁性能相的生成形貌。从以上例子可知,外加磁场能够使固态相变过程发生变化,从而影响材料的组织及性能。关于这方面的理论解释应从原子层次入手,逐渐深入到电子层次,并设法在原子、电

12、子层次重新解释固态相变的发生过程,与已有磁性理论相结合来解释所得实验现象。 磁场对晶体的影响磁场对物质影响的其他一些性质1)物质按磁性可分为铁磁性、顺磁性和抗磁性物质. 磁场对不同磁性物质相变过程的影响很大程度上取决于磁化强度. 一般而言, 低强度的磁场就能够影响铁磁性物质的相变温度、相变速率以及组织结构. 而对于顺磁性或抗磁性物质, 磁场对热力学参数的影响相对较弱. 但是在强磁场条件下, 非磁性物质的相变参数会发生可测量的变化, 组织结构也会发生明显改变.2)由于铁磁性材料和顺磁性材料及抗磁性材料在磁性能方面的巨大差异, 强磁场对铁磁性材料的磁化行为产生显著影响。对于相变过程, 磁场直接改变

13、系统Gibbs自由能。3)强磁场对固态相变中生成相形貌影响主要有两种机制: 一是由于不同相间磁性能的差异, 磁场对生成相产生偶极相互作用, 形成组织排列; 二是由于材料具有磁各向异性、形状各向异性或磁诱导各向异性, 在磁场热处理过程中因取向作用形成织构。4)强磁场作用对材料产生晶粒细化的效果, 对改善结构和功能材料的综合性能具有重要意义。强磁场产生晶粒细化的原因主要是: 强磁场提高形核率, 增加相变冷却速度, 抑制生成相长大; 磁场抑制反常晶粒长大, 使晶粒分布均匀化。5)超导强磁场科学的发展使其成为材料制备与改性方面独特的技术手段, 为强磁场技术的实用化应用提供了基本条件, 促进形成了强磁场材料学科。到目前为止, 强磁场材料学已经进行了较多的探索性实验研究。就固态相变而言, 在相稳定性、生成相形貌和晶粒细化等方面, 发现许多有价值的强磁作用现象, 开

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 建筑/环境 > 综合/其它

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号