简易数字频率计毕业论文第二版本

上传人:hs****ma 文档编号:490059594 上传时间:2023-07-21 格式:DOC 页数:27 大小:627.50KB
返回 下载 相关 举报
简易数字频率计毕业论文第二版本_第1页
第1页 / 共27页
简易数字频率计毕业论文第二版本_第2页
第2页 / 共27页
简易数字频率计毕业论文第二版本_第3页
第3页 / 共27页
简易数字频率计毕业论文第二版本_第4页
第4页 / 共27页
简易数字频率计毕业论文第二版本_第5页
第5页 / 共27页
点击查看更多>>
资源描述

《简易数字频率计毕业论文第二版本》由会员分享,可在线阅读,更多相关《简易数字频率计毕业论文第二版本(27页珍藏版)》请在金锄头文库上搜索。

1、北京电子科技职业学院Beijing Electronic Science and Technology Vocational College 毕 业 论 文 论文题目 简易数字频率计的设计系 部 电信工程学院 专 业 通信技术 班 级 09通信技术2班 姓 名 于银玲 指导教师 刘丽华 2011年 4 月目录:一 摘要二 概述.三 设计任务书四 设计原理及方案.五 整体电路设.六 单元电路设计1逻辑控制电路2锁存器和清零.3脉冲形成电路.4时基电路和闸门电路.5被测信号幅度扩展电路.6整体电路图.七 整体电路调试与仿真.八 实验心得参考文献.摘要在电子技术中,频率是最基本的参数之一,并且与许多

2、电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。测量频率的方法有多种,其中电子计数器测量频率具有精度高、使用方便、测量迅速,以及便于实现测量过程自动化等优点,是频率测量的重要手段之一。电子计数器测频有两种方式:一是直接测频法,即在一定闸门时间内测量被测信号的脉冲个数;二是间接测频法,如周期测频法。直接测频法适用于高频信号的频率测量,间接测频法适用于低频信号的频率测量。本文阐述了用数字电路设计了一个简单的数字频率计的过程。概述频率计的基本原理是用一个频率稳定度高的频率源作为基准时钟,对比测量其他信号的频率。通常情况下计算每秒内待测信号的脉冲个数,此时我们称闸门时间为1

3、秒。闸门时间也可以大于或小于一秒。闸门时间越长,得到的频率值就越准确,但闸门时间越长则没测一次频率的间隔就越长。闸门时间越短,测的频率值刷新就越快,但测得的频率精度就受影响。本文。数字频率计是用数字显示被测信号频率的仪器,被测信号可以是正弦波,方波或其它周期性变化的信号。电子系统非常广泛的应用领域内,到处可见到处理离散信息的数字电路。数字电路制造工业的进步,使得系统设计人员能在更小的空间内实现更多的功能,从而提高系统可靠性和速度。 如配以适当的传感器,可以对多种物理量进行测试,比如机械振动的频率,转速,声音的频率以及产品的计件等等。因此,数字频率计是一种应用很广泛的仪器数字集成电路广泛用于计算

4、机、控制与测量系统,以及其它电子设备中。一般说来,数字系统中运行的电信号,其大小往往并不改变,但在实践分布上却有着严格的要求,这是数字电路的一个特点。数字集成电路作为电子技术最重要的基础产品之一,已广泛地深入到各个应用领域。 设计任务书设计一简易数字频率计,其基本要求是:1)测量频率范围09.9KHz;2)最大读数9KHZ,闸门信号的采样时间为1s;.3)被测信号可以是正弦波、三角波和方波;4)显示方式为4位十进制数显示;5)使用EWB进行仿真;6)输入信号最大幅值可扩展。 设计原理及方案 数字频率计是直接用十进制的数字来显示被测信号频率的一种测量装置。它不仅可以测量正弦波、方波、三角波和尖脉

5、冲信号的频率 ,而且还可以测量它们的周期。所谓频率就是在单位时间(1s)内周期信号的变化次数。若在一定时间间隔T内测得周期信号的重复变化次数为N,则其频率为f=N/T,据此,设计方案框图如图1所示:图1 数字频率计组成框图图中脉冲形成的电路的作用是将被测信号变成脉冲信号,其重复频率等于被测信号的频率f。,时间基准信号发生器提供标准的时间脉冲信号,若其周期为1s,则们控电路的输出信号持续时间亦准确的等于1s。闸门电路由标准秒信号进行控制当秒信号来到时,闸门开通,被测脉冲信号通过闸门送到计数器译码显示电路。秒信号结束时闸门关闭,技计数器得的脉冲数N是在1秒时间内的累计数,所以被测频率f= N Hz

6、 一 整体电路设计如图2(a),2(b)为数字频率计的工作过程图 图2(a) 数字频率计的组成框图 图2(b) 数字频率计的工作时序波形数字频率计的工作过程是:被测信号f经脉冲电路整形,变成如所示的脉冲波形,其周期T与被测信号的周期相同。实际电路输出标准时间信号,设其高电平持续时间为1s,计数器的计数时间就是1s,计数器计得的脉冲数N(如图所示)就是被测信号的频率。逻辑控制单元的作用有两个:其一,产生清零脉冲,使计数器每次从零开始计数;其二,产生所存信号,是显示器上的数字稳定不变。这些信号之间的时序关系如图2(b)所示数字频率计由时基电路、控制电路、闸门电路、计数锁存和清零电路、脉冲形成电路和

7、译码显示电路组成二 单元电路设计 逻辑控制电路根据图2(b)所示时序波形,在标准时间信号结束时所产生的下降沿用来产生锁存信号 ,同时锁存信号经过反相器有用来产生清零信号,锁存信号的脉冲宽度由本身电路的时间常数决定。因此这两个脉冲信号和可以由单稳态触发器产生,其电路如图3所示设锁存信号的脉冲宽度t=1.1RC若取R=1000 K、C=0.01 Uf,则,t=1.1RC=0.011s。图3 控制电路 锁存器和清零锁存器的作用是将计数器在1s结束时的计数值进行锁存,使显示器获得稳定的测量值。因为计数器在1s内要计算成千上万个输入脉冲,若不加锁存器,显示器上的数字将随计数器的输出而变化,不便于读数。如

8、图2所示,1s的计数结束时。逻辑控制电路发出的锁存信号,将计数器此时的值送到译码器,因此显示器的数字是稳定的。选用了两片8D锁存器74LS273可以完成上述锁存功能。74LS273的真值表如表1所示。 表1 74LS273真值表 当时钟脉冲CP的上升沿到来时,锁存器的输出等于输入,即Q=D。从而将4个十进制计数器即个位、十位、百位、千位的输出值送到锁存器的输出端。正脉冲结束后,无论输入端D为何值,输出端Q的状态仍然保持原来的状态。所以在计数周期内,计数器的输出不会送到译码显示器。清零信号是在计数器的计算值送锁存后,为了下次计数而把计数器进行清零,所以在锁存信号发出后,利用反相器的功能得到一个对

9、计数器清零的延时信号。有计数器74LS90的R9(0)端接低电平,而把R0(1)作为清零输入,该清零信号是高电平有效,而锁存信号也是高电平有效,而且计数器清零必须在单稳触发信号之后,故在延迟反相器的基础上再加个反相器得到计数器的清零信号。 脉冲形成电路脉冲形成电路的作用是将待测信号(如正弦波、三角波或者其他呈周期性变化的波形)整形为计数器所要求的脉冲信号,其周期不变。将其他波形变换成脉冲波的电路有多种,如施密特触发器、单稳态触发器、比较器等,其中施密特触发器的应用较多。电路形式采用555构成的施密特触发器,电路原理如图4(a) 所示。 图中R1与R2的作用是将被测信号进行电平移动,因为555构

10、成的施密特触发器的上触发电平UT+ =2/3Ucc,下触发电平UT=1/3Ucc,如图4(b)所示。 4(a) 原理图 图4(b) 波形图 输入信号的直流电平Uxo应该满足下列关系1/3UccUxo1/2UT=0.83V.为使Uxo=2.5V,对于图4(a)所示电路,则取R1=R2=10K。 时基电路和闸门电路如图2(a)所示,闸门电路是控制计数器计数的标准时间信号,决定了被测信号的脉冲通过闸门进入计数器进行计数的计数个数,其精度很大程度上决定了频率计的频率测量精度。当要求频率测量精度高时,应使用晶体振荡器通过分频获得。在此频率计中,时基信号采用555定时器构成的多谐振荡器电路,当标准时间信号

11、(1s高电平)来到时,闸门开通,被测信号的脉冲通过闸门进入计数器计数;标准时间脉冲结束时(为低电平),闸门关闭,计数器无时钟脉冲输入。例如,时基信号的作用时间为1s,闸门电路将打开1s,若在这段时间内通过闸门电路的脉冲数目为1000个,则被测信号的频率就是1000Hz。由此可见闸门电路的逻辑功能可以有一个与非门来完成,如图5所示 图5 标准脉冲产生的闸门电路设标准时基为1s的脉冲是由555定时器构成的多谢振荡器电路产生的,由555定时器构成的多谐振荡气的周期计算公式:t=t1+t2=0.693(R1+2R2)C;占空比为:D= t2/ t1+t2= R2/ R1+2R250%,t1为正方波的宽度,t2为负方波的宽度;若取振荡器的频率f0=1/ t1+t2=0.8HZ,则振荡器的输出波形如图6所示,其中t1=1s,t2=0.25s。 图6 闸门电路各波形特点利用式t10.693(R1+R2)C;t20.693R2C。若取C=10Uf,则R2=36.07K,取标称值为36K;R1=108.22K,取R1=108K。门电路的输入输出个点波形如图6所示。 被测信号幅度扩展电路采用图7所示电路,可以扩展被测信号幅度范围。输入信号Ux先经过限幅器,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 建筑/环境 > 施工组织

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号