甲醇制氢工艺设计(反应器)

上传人:博****1 文档编号:489554384 上传时间:2023-02-14 格式:DOC 页数:77 大小:2.32MB
返回 下载 相关 举报
甲醇制氢工艺设计(反应器)_第1页
第1页 / 共77页
甲醇制氢工艺设计(反应器)_第2页
第2页 / 共77页
甲醇制氢工艺设计(反应器)_第3页
第3页 / 共77页
甲醇制氢工艺设计(反应器)_第4页
第4页 / 共77页
甲醇制氢工艺设计(反应器)_第5页
第5页 / 共77页
点击查看更多>>
资源描述

《甲醇制氢工艺设计(反应器)》由会员分享,可在线阅读,更多相关《甲醇制氢工艺设计(反应器)(77页珍藏版)》请在金锄头文库上搜索。

1、南京工业大学甲醇制氢工艺设计(反应器)前 言氢气是一种重要的工业产品,它广泛用于石油、化工、建材、冶金、电子、医药、电力、轻工、气象、交通等工业部门和服务部门,由于使用要求的不同,这些部门对氢气的纯度、对所含杂质的种类和含量都有不相同的要求,特别是改革开放以来,随着工业化的进程,大量高精产品的投产,对高纯度的需求量正逐步加大,等等对制氢工艺和装置的效率、经济性、灵活性、安全都提出了更高的要求,同时也促进了新型工艺、高效率装置的开发和投产。依据原料及工艺路线的不同,目前氢气主要由以下几种方法获得:电解水法;氯碱工业中电解食盐水副产氢气;烃类水蒸气转化法;烃类部分氧化法;煤气化和煤水蒸气转化法;氨

2、或甲醇催化裂解法;石油炼制与石油化工过程中的各种副产氢;等等。其中烃类水蒸气转化法是世界上应用最普遍的方法,但该方法适用于化肥及石油化工工业上大规模用氢的场合,工艺路线复杂,流程长,投资大。随着精细化工的行业的发展,当其氢气用量在2003000m3/h时,甲醇蒸气转化制氢技术表现出很好的技术经济指标,受到许多国家的重视。甲醇蒸气转化制氢具有以下特点:(1) 与大规模的天然气、轻油蒸气转化制氢或水煤气制氢相比,投资省,能耗低。(2) 与电解水制氢相比,单位氢气成本较低。(3) 所用原料甲醇易得,运输、贮存方便。(4) 可以做成组装式或可移动式的装置,操作方便,搬运灵活。对于中小规模的用氢场合,在

3、没有工业含氢尾气的情况下,甲醇蒸气转化及变压吸附的制氢路线是一较好的选择。本设计采用甲醇裂解+吸收法脱二氧化碳+变压吸附工艺,增加吸收法的目的是为了提高氢气的回收率,同时在需要二氧化碳时,也可以方便的得到高纯度的二氧化碳。目录1 设计任务书 32 甲醇制氢工艺设计 42.1 甲醇制氢工艺流程 42.2 物料衡算 42.3 热量衡算 63 反应器设计 . 93.1 工艺计算 93.2 结构设计 . 134 管道设计.5 自控设计.6 技术经济评价、环境评价7 结束语.8 致谢.9 参考文献.附录:1.反应器装配图,零件图2.管道平面布置图3.设备平面布置图4.管道仪表流程图5.管道空视图6.单参

4、数控制方案图1、设计任务书2、甲醇制氢工艺设计2.1 甲醇制氢工艺流程甲醇制氢的物料流程如图12。流程包括以下步骤:甲醇与水按配比1:1.5进入原料液储罐,通过计算泵进入换热器(E0101)预热,然后在汽化塔(T0101)汽化,在经过换热器(E0102)过热到反应温度进入转化器(R0101),转化反应生成H2、CO2的以及未反应的甲醇和水蒸气等首先与原料液换热(E0101)冷却,然后经水冷器(E0103)冷凝分离水和甲醇,这部分水和甲醇可以进入原料液储罐,水冷分离后的气体进入吸收塔,经碳酸丙烯脂吸收分离CO2,吸收饱和的吸收液进入解析塔降压解析后循环使用,最后进入PSA装置进一步脱除分离残余的

5、CO2、CO及其它杂质,得到一定纯度要求的氢气。图12 甲醇制氢的物料流程图及各节点物料量2.2 物料衡算1、依据甲醇蒸气转化反应方程式: CHOHCO+2H (1-1)CO+HOCO+ H (1-2)CHOH分解为CO转化率99%,反应温度280,反应压力1.5MPa,醇水投料比1:1.5(mol).2、投料计算量 代入转化率数据,式(1-3)和式(1-4)变为:CHOH0.99CO+1.98H+0.01 CHOHCO+0.99HO0.99CO+ 1.99H+0.01CO合并式(1-5),式(1-6)得到: CHOH+0.981 HO0.981 CO+0.961 H+0.01 CHOH+0.

6、0099 CO氢气产量为: 2400m/h=107.143 kmol/h甲醇投料量为: 107.143/2.960132=1158.264 kg/h水投料量为: 1158.264/321.518=977.285 kg/h3、原料液储槽(V0101)进: 甲醇 1158.264 kg/h , 水 977.285 kg/h出: 甲醇 1158.264 kg/h , 水 977.285 kg/h4、换热器 (E0101),汽化塔(T0101),过热器(E0103)没有物流变化.5、转化器 (R0101)进 : 甲醇 1158.264 kg/h , 水977.285 kg/h , 总计2135.549

7、 kg/h出 : 生成 CO 1158.264/320.980144 =1560.920 kg/h H 1158.264/322.96012 =214.286 kg/h CO 1158.264/320.009928 =10.033 kg/h 剩余甲醇 1158.264/320.0132 =11.583 kg/h 剩余水 977.285-1158.264/320.980118=338.727 kg/h 总计 2135.549 kg/h6、吸收塔和解析塔 吸收塔的总压为15MPa,其中CO的分压为0.38 MPa ,操作温度为常温(25). 此时,每m 吸收液可溶解CO11.77 m.此数据可以在

8、一般化工基础数据手册中找到,二氯化碳在碳酸丙烯酯中的溶解度数据见表1一l及表12。解吸塔操作压力为0.1MPa, CO溶解度为2.32,则此时吸收塔的吸收能力为: 11.77-2.32=9.45 0.4MPa压力下 =pM/RT=0.444/0.0082(273.15+25)=7.20kg/ mCO体积量 V=1560.920/7.20=216.794 m/h据此,所需吸收液量为 216.794/9.45=22.94 m/h考虑吸收塔效率以及操作弹性需要,取吸收量为 22.94 m/h=68.82 m/h可知系统压力降至0.1MPa时,析出CO量为216.794m/h=1560.920 kg/

9、h.混合气体中的其他组分如氢气,CO以及微量甲醇等也可以按上述过程进行计算,在此,忽略这些组分在吸收液内的吸收.7、PSA系统略.8、各节点的物料量综合上面的工艺物料衡算结果,给出物料流程图及各节点的物料量,见图1一2.3.3 热量衡算1、汽化塔顶温确定在已知汽相组成和总压的条件下,可以根据汽液平衡关系确定汽化塔的操作温度甲醇和水的蒸气压数据可以从一些化工基础数据手册中得到:表1-3列出了甲醇的蒸气压数据水的物性数据在很多手册中都可以得到,这里从略。在本工艺过程中,要使甲醇水完全汽化,则其汽相分率必然是甲醇40%,水60%(mol)且已知操作压力为1.5MPa,设温度为T,根据汽液平衡关系有

10、0.4p+0.6p=1.5MPa初设 T=170 p=2.19MPa; p=0.824 MPa p=1.37041.5 MPa再设 T=175 p=2.4MPa; p=0.93 MPa p=1.51 MPa蒸气压与总压基本一致,可以认为操作压力为1.5MPa时,汽化塔塔顶温度为175.2、转换器(R0101)两步反应的总反应热为49.66kJ/mol,于是,在转化器内需要供给热量为: Q=1158.2640.99/321000(-49.66) =-1.78106 kJ/h此热量由导热油系统带来,反应温度为280,可以选用导热油温度为320,导热油温度降设定为5,从手册中查到导热油的物性参数,如

11、比定压热容与温度的关系,可得:c=4.18680.68=2.85kJ/(kgK), c=2.81kJ/(kgK)取平均值 c=2.83 kJ/(kgK)则导热油用量 w=Q/(ct)= 8.9010/(2.835)=62898 kg/h3、过热器(E0102)甲醇和水的饱和蒸气在过热器中175过热到280,此热量由导热油供给.从手册中可以方便地得到甲醇和水蒸气的部分比定压热容数据,见表1-4.气体升温所需热量为:Q= cmt=(1.90579.126+4.82488.638) (280-175)=3.6310kJ/h导热油c=2.826 kJ/(kgK), 于是其温降为: t=Q/(cm)=

12、3.6310/(2.82662898)=2.04导热油出口温度为: 315-2.0=313.04、汽化塔(TO101 ) 认为汽化塔仅有潜热变化。175 甲醇H = 727.2kJ/kg 水 H = 203IkJ/kg Q=579.126727.2+2031488.638=1.4110 kJ/h以300导热油c计算 c=2.76 kJ/(kgK)t=Q/(cm)=1.4110/(2.7662898)=8.12则导热油出口温度 t=313.0-8.1=304.9导热油系统温差为T=320-304.9=15.1 基本合适.5、换热器(EO101)壳程:甲醇和水液体混合物由常温(25 )升至175

13、,其比热容数据也可以从手册中得到,表1 一5 列出了甲醇和水液体的部分比定压热容数据。液体混合物升温所需热量Q= cmt=(579.1263.14+488.6384.30) (175-25)=5.8810kJ/h管程:没有相变化,同时一般气体在一定的温度范围内,热容变化不大,以恒定值计算,这里取各种气体的比定压热容为: c10.47 kJ/(kgK) c14.65 kJ/(kgK) c 4.19 kJ/(kgK)则管程中反应后气体混合物的温度变化为:t=Q/(cm)=5.8810/(10.47780.452+14.65107.142+4.19169.362)=56.3换热器出口温度为 280-56.3=223.76、冷凝器(EO103) 在E0103 中包含两方面的变化:CO, CO, H的冷却以及CHOH , HO的冷却和冷凝. CO, CO, H的冷却Q=cmt=(10.47780.452+14.65107.142+4.195.017) (223.7-40)=1.7910kJ/h CHOH的量很小,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 教学/培训

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号