毕业设计井下排水系统方案

上传人:re****.1 文档编号:489552136 上传时间:2023-01-14 格式:DOC 页数:36 大小:380KB
返回 下载 相关 举报
毕业设计井下排水系统方案_第1页
第1页 / 共36页
毕业设计井下排水系统方案_第2页
第2页 / 共36页
毕业设计井下排水系统方案_第3页
第3页 / 共36页
毕业设计井下排水系统方案_第4页
第4页 / 共36页
毕业设计井下排水系统方案_第5页
第5页 / 共36页
点击查看更多>>
资源描述

《毕业设计井下排水系统方案》由会员分享,可在线阅读,更多相关《毕业设计井下排水系统方案(36页珍藏版)》请在金锄头文库上搜索。

1、摘 要随着计算机控制技术的迅速发展,以微处理器为核心的可编程逻辑控制器(PLC)控制已逐步取代继电器控制,普遍应用于各行各业的自动化控制领域。本文采用集中控制器对矿井水泵房设备运行实施实时监控,自动、手动控制水泵的启停与闸阀的开、关,并具有自诊断功能,可实现水泵房的无人值守。控制系统通过以太网接入矿井工业以太网,实现水泵监控子系统与全矿井的监控系统信息共享,满足矿井自动化控制的要求。集中控制器采用西门子S7200系列工业级PLC与先进的过程控制软件,综合考虑矿井各种安全信息,实现井下排水监控系统的最优控制策略;井下排水监控系统的报警,信息显示,报表统计处理全部融入整个矿井监控系统的数据系统。从

2、而实现中央水泵房的自动控制功能。本文重点讨论了中央水泵房的自动控制设计过程、通信、模拟仿真等问题。关键字:PLC,西门子S7200,MCGS,工业以太网 第二章 绪论井下排水系统是煤矿生产中四大系统之一,担负着井下积水排除的重要任务。然而,目前我国的井下排水系统仍由很多依靠传统的人工操作方式。本章分析这种排水系统的组成与工作过程,指出其存在的问题,为井下主排水系统自动控制的研究提供依据。2.1排水系统概述2.1.1矿井生产过程中排水的重要性在煤矿地下开采的过程中,由于地层中含水的涌出,雨水和江河中水的渗透,水砂充填和水力采煤矿井的井下供水,将要有大量的水昼夜不停地汇集于井下。矿井涌水与采区的水

3、文地质与当地的气象条件有关系,涌水量在不同的季节也呈现不同。在一些大水矿井,矿井涌水量可达到每秒17立方米,甚至超过每秒20立方米。另外,煤炭开采过程中,由于地层结构被破坏,岩层断裂,使采区与储水层连通,发生突水事故,涌水量会突然增加。如果不能与时地将这些积水排送到井上,井下的生产就可能受到阻碍,井下的安全就会得不到保障,严重者会造成重大事故。给人民的生命、国家的财产都带来了极大的威胁。因此,井下排水就显得尤为重要。井下自动排水系统的任务就是把流入井下煤矿巷道中的矿井积水排送至地表。根据统计,每开采1吨煤就要排出2-7吨矿井水,有时甚至要排出30-40吨矿井水。井下排水设备所配备电机的功率,小

4、的几千瓦到几十千瓦,大的几百千瓦到上千千瓦、在我国煤炭行业中,井下排水用电量占原煤生产总耗电量的18%-41%,一般为20%左右。因此,井下排水设备运转的可靠性(安全运转)与经济性(效率高、电耗量小),具有十分重要的意义。2.1.2矿井排水系统的组成部分井下排水系统一般采用离心式水泵,一些小型煤矿或浅水井临时排水系统也采用潜水泵。离心式水泵排水系统主要由离心式水泵、电动机、起动设备、仪表、管路与管路附件等组成。滤水器和底阀 滤水器安装在吸水管的下端,插入吸水井下面,不得低于O.5m 。其作用是防止井底沉积的煤泥和杂物吸入泵,导致水泵被堵塞或被磨损。在滤水器装有舌型底阀,其作用是使灌入水泵和吸水

5、管中的引水,以与停泵后的存水不致漏掉。但是现在的排水系统中,为了提高排水效率,减小水泵腐蚀,一般不用底阀,而用射流泵或真空泵为水泵和吸水管注水。闸阀调节闸阀安装在靠近水泵排水管上方的排水管路上,位于逆止阀的下方。其功用为:调节水泵的流量和扬程;起动时将它完全关闭,以降低起动电流。调节闸阀的优点是流动阻力和关闭压力较小,安装时无方向性,能够方便地来调节水泵的流量和扬程等。其缺点是密封面容易擦伤,检修较为困难,高度尺寸较大,在安装位置受到限制时,安装不便,结构较复杂,价格较高。 放水闸阀安装在调节闸阀上方的排水管路的放水管上,其作用为检修排水管路时放水用。逆止阀 逆止阀安装在调节闸阀的上方,其作用

6、是当水泵突然停止运转(如突然停电)时,或者在未关闭调节闸阀的情况下停泵时,能自动关闭,切断水流,使水泵不致受到水力冲击而遭到损坏。灌引水漏斗、放气栓和旁通管 灌引水漏斗是在水泵初次起动时,向水泵和吸水管中灌引水用。在向水泵和吸水管中灌引水时,要通过放气栓(又叫气嘴)将水泵和吸水管中的空气放掉。当排水管中有存水时,也可通过旁通管向水泵和吸水管中灌引水,此时要将旁通管上的阀门打开。此外,还可通过旁通管,利用排水管中的压力水的反冲作用,冲掉积存于水泵流通部分和附着于滤水器上的杂物,但此时须通过连接在底阀上的铁丝或链条将底阀提起。压力表和真空表 压力表安装在水泵的排水接管上,为检测排水管中水压大小用。

7、常用的压力表为普通弹簧管压力表,根据其结构特征可分为径向无边、径向带边和轴向带边三种。表壳的公称直径有60mm,100mm,150mm,200mm和250mm五种。压力表所测出的压力叫做表压力或相对压力,它比绝对压力小1个大气压。 真空表安装在水泵的吸水接管上,为检测吸水管的真空度用。根据其结构特征也可分为径向无边、径向带边和轴向带边三种。表壳的公称直径和压力表一样,也分为60, 100, 150,和250mm五种。真空表测量围为0-0.1 MPa(一个大气压)。 射流泵或真空泵 离心式水泵在起动前必须将吸水管和泵腔注满水才能进入运行状态,否则水泵转动时将无法吸水,形成“干烧”,严重影响水泵的

8、使用寿命。在无底阀的排水系统中,水泵每次起动都要灌水,这一工作由抽真空设备完成,一般使用射流泵或真空泵。如图1-2所示。它们的工作原理不同,但都能在系统中使水泵工作腔达到一定的真空度,保证系统正常工作。2.2井下排水系统存在的问题目前,我国大多煤矿企业的井下水泵房使用的仍然是传统的人工操作排水系统,以离心式水泵系统为主。这种排水系统的操作以离心式水泵的工作特性为基础,泵站的起停时间判断,完全依赖于工人的经验和已有的操作规程。当水仓水位到达设定的高水位时,工人打开射流泵(或真空泵),为水泵抽真空,同时观测真空表的读数。真空度达到要求后,起动水泵机组,使水泵运转。当水泵出水口压力表读数达到要求时,

9、开起闸阀进行排水,同时关闭抽真空的射流泵(或真空泵)。 停泵过程要进行相反的操作。当水仓积水降至低水位时,先将闸阀关死,再停水泵机组。根据现场涌水量的不同,工人还要判断同时投入几台水泵工作,以便于既能与时排出积水,又能使泵站合理使用,避免过度频繁的起停。其存在的问题有如下几点:效率低、可靠性差。这种排水系统的工作流程完全由手工完成,工人按部就班的完成各个执行件的操作。另外,对水位、涌水量大小等现场数据的判断依赖于工人的经验。作业过程比较复杂,要求工人具有很强的责任心,否则可能出现误操作,甚至发生大的事故。工人劳动强度大。人工操作无法避免高强度的劳作。尤其是闸阀的操作,劳动量最大。而且,水泵房要

10、时时有人值守,以便在发生异常情况时,与时报警检修。2.3排水系统为何要实现自动控制针对上述排水系统存在的问题,本文提出了基于PLC的矿井主排水自动控制系统的设计。自动控制系统的应用,将使得排水系统可靠性增强,整个工作流程通过软件的编程来实现,程序确定后,水泵机组将按给定的程序自动启停水泵、开合阀门,极大的减小工人的劳动强度。PLC将水泵机组的运行状态与参数经安全生产监测系统传至地面生产调度监控中心主机,管理人员在地面即可掌握井下主排水系统设备的所有检测数据与工作状态,又可根据自动化控制信息,实现井下主排水系统的遥测、遥控。2.4我国矿井主排水系统的现状井下排水是伴随着采矿工程产生的一项系统工程

11、。随着控制理论和现代检测技术的发展,自动排水系统的研究在理论和实践上都取得了一定进步。传统的继电器控制方法,用人工进行检测(如人工检测水仓水位、淤泥厚度、管道、闸阀与配电设备状况等),这种检测控制方法效率低,工人劳动强度大,且由于井下环境恶劣,故障率较高。所以靠人工检测的方法已不适应煤炭发展的需要,取而代之的是自动化排水系统。随之,一种新颖的矿井排水计算机自动控制系统问世。由于矿井排水系统属于多变量、非线性、时变的复杂系统,特别是在管道和水泵等环节中,各变量之间又存在着交叉,因此矿井排水系统非常适合于采用模糊控制的方法进行动态监测和故障诊断。该系统采用先进的集散式控制方式,建立了多级模块化的结

12、构体系,提出了多参数的模糊综合决策方法。目前,PLC在国外工业控制中已获得广泛应用,在矿井排水系统中,采用PLC自动监测排水系统的运行状况,自动进行数据采集、自动记录、故障报警、事故分析、多台水泵启动的自动切换等,所得到的动态资料准确性高,控制的可靠性高第三章 中央水泵房系统的特点3.1 安全可靠性本系统采用高可靠性的多线制开关量接口“星型”结构模式。所谓多线制结构模式就是控制核心PLC与被控设备采用多线制的开关量接口作为控制与反馈的接口,因为开关量本身具有不受周围环境干扰的特点,同时这种结构本身是一种“星型结构”,所以某一故障点不会影响其它环节的工作,也就是说整个系统具有极高的可靠性1。系统

13、结构见下图:多线制开关了量接口多线制开关量接口多线制模拟量接口光纤地面监控服务器PLC控制器现场传感器真空泵启动柜操作面板1#真空泵2#真空泵1#真空泵阀2#真空泵阀1#泵就地控制柜操作面板1#泵启动柜1#电动阀门1#逆止阀.图3-1 多线制开关量接口“星型”结构模式这种结构形式具有如下特点:3.1.1 手动模式为真正意义上的手动模式自动模式下由PLC通过开关量输出模块控制被控设备,当系统转为手动模式,或者PLC故障、PLC失电等特殊情况下,系统自动转为手动模式,可以通过操作就地控制柜上的按钮以继电控制的方式进行手动操作,而不是通过PLC或数据口通讯的方式控制被控设备。如下图所示:启动按钮自动

14、模式被控设备手动模式PLC开关量输出停止按钮闭锁触点图3-2 手动和自动模式转换3.1.2 系统具有高可靠性因为开关量本身具有不受周围环境干扰的特点,同时这种结构本身是一种“星型结构”,所以某一故障点不会影响其它环节的工作,也就是说整个系统具有极高的可靠性。C、手动操作方式为集中操作对于某一台泵而言,其手动操作完全可以通过在水泵附近的就地操作柜进行全部的手动操作,例如真空泵操作、排气阀操作、排水泵操作、主排水电动阀操作等等,不用到这些被控设备附近进行操作。D、主排水泵运行电量的采集灵活主排水泵运行电量的采集即可以通过电磁启动器的微机综保的智能数据接口采集,也可以通过多线制方式直接采集二次侧的电

15、流、电压输出,第二种采集方式特别适合于矿井电力自动化占用微机综保的智能数据接口情况下的电量采集。E、系统布线较复杂由于系统采用了多线制星型的结构,所以必然造成布线较多、较复杂的缺点,但也正因如此,为系统的可靠运行提供了保证2。3.2 经济性3.2.1 选泵依据水泵选型,应根据设计的工艺流程和排水要求,从以下几个方面加以考虑:1、流量是选泵的重要性能数据之一,它直接关系到整个排水系统的排水能力。在工艺设计中计算出水泵正常、最小和最大三种流量。选泵时,以最大流量为依据,兼顾正常流量,在没有最大流量时,通常可取正常流量的1.1倍作为最大流量。 2、水泵的理论扬程是选泵的又一重要数据,一般要按放大5%10%余量后得到的扬程来进行水泵选型。 (3)液体性质,包括液体介质名称,物理性质,化学性质和其它性质,物理性质有温度C密度D,粘度U,介质中固体颗粒直径和气体的含量等,这涉与到系统的扬程,有效气蚀余量计算和合适泵的类型;化学性质,主要指液体介质的化学腐蚀性和毒性,是选用泵材料和选用那一种轴封型式的重要依据。(4)排水系统的管路布置条件。吸入侧的最低液面,排出侧的最高液面等一些数据和管道规格与其长度、材料、管件规格、数量等都要加以考虑,以便进行水泵扬程计算和汽蚀余量的校核。但是其

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 建筑/环境 > 施工组织

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号