工程力学课程

上传人:新** 文档编号:489087134 上传时间:2022-12-31 格式:DOC 页数:15 大小:650.04KB
返回 下载 相关 举报
工程力学课程_第1页
第1页 / 共15页
工程力学课程_第2页
第2页 / 共15页
工程力学课程_第3页
第3页 / 共15页
工程力学课程_第4页
第4页 / 共15页
工程力学课程_第5页
第5页 / 共15页
点击查看更多>>
资源描述

《工程力学课程》由会员分享,可在线阅读,更多相关《工程力学课程(15页珍藏版)》请在金锄头文库上搜索。

1、第8章 教学方案弯曲应力和强度计算基本内容弯曲的概念和力学模型的简化剪力和弯矩纯弯曲时的正应力横力弯曲时的正应力和强度计算教学目的1、 了解梁弯曲的工程实例。2、 纯熟掌握画剪力图和弯矩图。3、掌握纯弯梁横截面上的正应力分布及计算。4、纯熟掌握弯曲强度计算。重点、难点梁横截面上的正应力计算及梁的强度计算。第8章 弯曲应力和强度计算8.1 弯曲的概念和力学模型的简化8.1.1 弯曲的工程实例在工程实际中,通常把这种以弯曲变形为主的杆件叫做梁。(1)简支梁:梁的端部一端用固定铰支座支承,另一端用可动铰支座支承,这样的梁称为简支梁。如图8.1(a)所示的行车大梁,轨道对两端车轮轮缘的约束作用可简化为

2、一个固定铰支座、一个可动铰支座,因此可简化为简支梁,如图8.1(b)所示。(2)外伸梁:支承与简支梁相同,但梁的一端或两端伸出支座以外,这样的梁称为外伸梁。图8.3(a)所示火车轮轴就可以简化为外伸梁,如图8.3(b)所示。(3)悬臂梁:梁的一端是固定端,另一端是自由端的梁称为悬臂梁。如图8.2(a)所示塔罐就可以简化为图8.2(b)所示悬臂梁。梁在两支座间的部分称为跨,其长度称为梁的跨长。常见的静定梁大多是单跨的。8.1.2 弯曲的受力和变形特点(a)(b)图8.3F2AF1B受力特点:杆件承受作用在轴线所在平面内、且垂直于轴线的横向外力或外力偶的作用。变形特点:杆的轴线在变形后由直线变成曲

3、线,同时杆的各个横截面也发生了转动。8.1.3 平面弯曲的概念如图:梁的横截面都有一根纵向对称轴。整个杆件有一个包含轴线在内的纵向对称面。梁变形后的轴线与外力在同一平面内AF1F2 B对称轴纵向对称面FB 图8.4当外力(载荷与支座反力)都作用在该对称面内时,梁弯曲变形后,轴线仍保持在此对称平面内,成为一条平面曲线(图8.4),这种弯曲叫做对称弯曲。通常将梁变形后的轴线所在平面与外力所在平面相重合的弯曲变形称为平面弯曲。8.2 剪力和弯矩8.2.1 剪力和弯矩在弯曲外力作用下,梁产生弯曲变形,横截面上的内力可以通过截面法求出来。如图8.5(a)所示的简支梁,在外力作用下处在平衡状态。现假想在距

4、左端为的m-m截面处,用一假想的垂直于梁轴线的平面将梁截为两段,取其中的任一段梁,例如取左段梁研究,并将右段梁对它的作用以截面上的内力来代替(图8.5(b)。为使左段梁保持平衡,在其右端截面上,应当有两个内力:图8.5沿截面切线方向的力和力偶矩,力称为剪力,力偶矩称为弯矩。1剪力和弯矩的计算上述梁在截面m-m上内力剪力和弯矩的具体数值可由平衡条件求得,即, (矩心O为截面m-m的形心)可得,。2剪力、弯矩符号的规定为了研究方便,现对梁的内力剪力和弯矩作如下的正负号规定。(1)剪力符号规定取微段梁,若截面上的剪力对梁上任意一点的矩为顺时针转向时,剪力为正;反之为负。如图8.6所示。(2)弯矩符号

5、规定图8.7图8.6取微段梁,若截面上的弯矩使得梁呈凹形时,弯矩为正;使梁变成凸形时,弯矩为负。如图8.7所示。在计算横截面上的剪力和弯矩时,一般先按正向假设,这样通过列平衡方程计算出的结果,其符号就与规定的符号一致,不需要再进行符号讨论。8.2.2 剪力方程和弯矩方程假设梁截面位置用沿梁轴线的坐标表达,则梁的各个横截面上的剪力和弯矩都可以表达为坐标的函数,即:,通常把它们叫做梁的剪力方程和弯矩方程。8.2.3 剪力图和弯矩图为了表白内力沿梁轴线的变化情况,通常用图形将剪力和弯矩沿梁长的变化情况表达出来,这样的图形分别称为剪力图和弯矩图。基本作法:先列出剪力方程和弯矩方程,建立以梁横截面位置x

6、为横坐标,以横截面上的剪力和弯矩为纵坐标的坐标系,然后通过方程绘出表达或的图线。xxlABFAFBFQMq()(+)(+)(a)(b)(c)图8.10【例8-1】 图8.10(a)所示的简支梁,在全梁上受集度为的均布载荷作用,试作梁的剪力图和弯矩图。解:求此梁的内力图时,应先求支座反力、列内力方程,最后由内力方程作内力图。 (1)求支座反力运用平衡方程求得(2)建立内力方程 取距左端为的任意横截面,考虑截面左侧的梁段,则梁的剪力和弯矩方程分别为 (0) (0)(3)画内力图剪力方程是的一次函数,所以剪力图是一条倾斜直线段。由,可画出剪力图(图8.10(b)。弯矩方程是的二次函数,所以弯矩图是一

7、条二次抛物线。由,可画出弯矩图(图8.10(c)。xBFabClA(+)(+)()FQMx(a)(b)(c)图8.11【例8-2】 图8.11(a)所示的简支梁,在C点处受集中力F的作用,试作梁的剪力图和弯矩图。解:(1)求支座反力运用平衡方程求得,(2)建立内力方程由于梁在C点处有集中力的作用,则在集中力两侧的梁段,其剪力和弯矩方程均不相同,因此,内力在全梁范围内不能用一个统一的函数式来表达。必须以C为界,将梁分为AC和CB两段,分别写出其剪力方程和弯矩方程。对AC段梁,其剪力方程和弯矩方程分别为 对AC段梁,其剪力方程和弯矩方程分别为 (3)画内力图由两段梁的剪力方程可知,两段梁的剪力图各

8、为一条平行于梁轴线的直线段。由两段梁的弯矩方程可知,两段梁的弯矩图各为一条斜直线段。绘出的剪力图和弯矩图如图8.11(b)、(c)所示。【例8-3】图8.12(a)所示的简支梁,在C点处受集中力偶的作用,试作梁的剪力图和弯矩图。解:(1)求支座反力运用平衡方程求得,(2)建立内力方程BMeabClA()FQ(+)()Mx(a)(b)(c)x图8.12剪力方程无需分段, 弯矩方程分两段,对AC段梁,弯矩方程为 对CB段梁,弯矩方程为 (3)画内力图梁的剪力方程是一个常量,因此剪力图是一条平行与梁轴线的直线段,如图8.12(b)。由于两段梁的弯矩方程都是的一次函数,所以两段梁的弯矩图各为一条斜直线

9、段,如图8.12(c)。综上例题可知:(1)在集中力作用处剪力图发生突变,并且此突变值等于集中力的大小。(2)在集中力偶作用处,弯矩图发生突变,并且突变值的大小等于集中力偶值。8.3 纯弯曲时的正应力8.3.1 纯弯曲的概念如图8.14(a)所示的矩形截面简支梁,在对称载荷F作用下,其剪力图和弯矩图如图8.14(b)和(c)所示。可以看出,在梁的CD段内,剪力为零,弯矩为常数,这种情况称为纯弯曲;而梁的AC、DB段既有剪力又有弯矩,称为横力弯曲或剪切弯曲。FQF(b)(+)M(+)FaFaF()(c)图8.14 图8.158.3.2 纯弯曲实验及假设1、实验现象及变形特点以图8.15(a)所示

10、的矩形截面梁为例,通过实验观测知其变形特点如下:(1)变形前与纵向线垂直的横向线在变形后仍为直线,并且仍然与变形后的纵向线保持垂直,但相对转过一个角度;(2)变形前互相平行的纵向直线,变形后均变为圆弧线,并且上部的纵向线缩短,下部的纵向线伸长;2、假设平面假设梁的横截面在梁弯曲后仍然保持为平面,并且仍然与变形后的梁轴线保持垂直。单向受力假设梁的纵向纤维处在单向受力状态,且纵向纤维之间的互相挤压作用可忽略不计。梁变形后,在凸边的纵向纤维伸长,而在凹边的纵向纤维缩短。由梁的变形的连续性,可知在梁中一定有一层纤维既不伸长也不缩短,此层称为中性层。中性层与梁横截面的交线称为中性轴。8.3.3 纯弯曲时

11、横截面上的正应力1几何方面如图8.16(a)所示,假设用两横截面m-n和p-q在梁上截出一长为的微段。梁在发生纯弯曲变形后,微段的左右截面将有一个微小的相对转动,中性层和截面中性轴如图8.16(b)所示。假设微段两端截面间的相对转角为(图8.16(c),表达微段中性层的曲率半径,则弧线的长度为。图8.16距中性层为处的纵向纤维原长为,变形后的长度为,所以其伸长,相应的线应变为: (a)2物理方面根据单向受力假设可知,在弹性范围内应力与应变的关系满足弹性胡克定律, (b)此式表白,梁横截面上的正应力与其作用点到中性轴的距离成正比,并且在坐标相同的各点处正应力相等,如图8.17所示。图8.173静

12、力学方面由图8.17可以看出,梁横截面各微面积上的微内力构成了空间平行力系,它们向截面形心简化的结果为以下三个内力分量, 纯弯曲梁横截面上只有弯矩作用,所以有 (c) (d) (e)将(b)代入以上三式,并结合截面的几何性质可得 (f) (g) (h)由(f)可得,即梁横截面对中性轴(z轴)的静矩等于零。亦即中性轴必通过横截面的形心,这就拟定了中性轴的位置。由式(g)可得,即梁横截面对y、z轴的惯性积等于零,说明y、z轴应为横截面的形心主轴。对上述矩形横截面,(g)式是自动满足的。 最后由式(h)可得 (8-1)是梁横截面对中性轴的惯性矩。表白梁抵抗弯曲变形的能力,称为梁的弯曲刚度。将(8-1)式代入(b)式整理,可得梁在纯弯曲时横截面上任一点的正应力的计算公式 (8-2)由公式可知,梁横截面上任一点的正应力,与截面上的弯矩和该点到中性轴的距离成正比,与截面对中性轴的惯性矩成反比。虽然该公式是通过矩形截面梁在纯弯曲的情况下推导出来的,但也合用于具有纵向对称面的其它对称截面梁的纯弯曲情况,如工字型、T字型、槽型截面梁等。应用公式(8-2)计算梁横截面上任一点的正应力时,可将和的绝对值代入,计算出正应力。其正负号,可由横截面的受拉压区(拉压区由弯矩方向拟定)直接判断,若点在受拉区为拉应力,在受压区为压应力。拉应力为正,压

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 活动策划

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号