教育专题:函数值域的求法

上传人:re****.1 文档编号:489081211 上传时间:2023-06-09 格式:DOC 页数:15 大小:1,010.01KB
返回 下载 相关 举报
教育专题:函数值域的求法_第1页
第1页 / 共15页
教育专题:函数值域的求法_第2页
第2页 / 共15页
教育专题:函数值域的求法_第3页
第3页 / 共15页
教育专题:函数值域的求法_第4页
第4页 / 共15页
教育专题:函数值域的求法_第5页
第5页 / 共15页
点击查看更多>>
资源描述

《教育专题:函数值域的求法》由会员分享,可在线阅读,更多相关《教育专题:函数值域的求法(15页珍藏版)》请在金锄头文库上搜索。

1、函数值域的求法 一、直接法:从自变量的范围出发,推出的取值范围。或由函数的定义域结合图象,或直观观察,准确判断函数值域的方法。 例1:求函数的值域。 例2:求函数的值域。 例3:求函数的值域。解:,函数的值域为。二、配方法:配方法式求“二次函数类”值域的基本方法。形如的函数的值域问题,均可使用配方法。例1:求函数()的值域。解:, , 函数()的值域为。三、最值法:对于闭区间上的连续函数,利用函数的最大值、最小值求函数的值域的方法。 例1 求函数 的值域。解:由0,解出定义域为-3,1。 函数y在-3,1内是连续的,在定义域内由 的最大值为4,最小值为0。函数的值域是0,2例2:求函数,的值域

2、。 例3:求函数的值域。 四、反函数法:利用函数和它的反函数的定义域与值域的互逆关系,通过求反函数的定义域,得到原函数的值域。例1:求函数的值域。解:由解得,五、分离常数法:分子、分母是一次函数得有理函数,可用分离常数法,此类问题一般也可以利用反函数法。小结:已知分式函数,如果在其自然定义域(代数式自身对变量的要求)内,值域为;如果是条件定义域(对自变量有附加条件),采用部分分式法将原函数化为,用复合函数法来求值域。例1:求函数的值域。解:,函数的值域为。六、换元法:运用代数代换,奖所给函数化成值域容易确定的另一函数,从而求得原函数的值域,形如(、均为常数,且)的函数常用此法求解。例1:求函数

3、的值域。解:令(),则,当,即时,无最小值。函数的值域为。七、判别式法:把函数转化成关于的二次方程;通过方程有实数根,判别式,从而求得原函数的值域,形如(、不同时为零)的函数的值域,常用此方法求解。例1:求函数的值域。解:由变形得,当时,此方程无解;当时,解得,又,函数的值域为八、函数的单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域。例1:求函数的值域。解:当增大时,随的增大而减少,随的增大而增大,函数在定义域上是增函数。,函数的值域为。例2求函数在区间上的值域。分析与解答:任取,且,则,因为,所以:,当时,则;当时,则;而当时,于是:函数在区间上的值域为。构造相关

4、函数,利用函数的单调性求值域。例3:求函数的值域。分析与解答:因为,而与在定义域内的单调性不一致。现构造相关函数,易知在定义域内单调增。,又,所以:,。九、基本不等式法利用基本不等式和是求函数值域的常用技巧之一, 利用此法求函数的值域, 要合理地添项和拆项, 添项和拆项的原则是要使最终的乘积结果中不含自变量, 同时, 利用此法时应注意取成立的条件. 例1 求函数的值域. 解答: , 当且仅当时成立. 故函数的值域为. 此法可以灵活运用, 对于分母为一次多项式的二次分式, 当然可以运用判别式法求得其值域, 但是若能变通地运用此法, 可以省去判别式法中介二次不等式的过程. 例2 求函数的值域. 解

5、答: 此题可以利用判别式法求解, 这里考虑运用基本不等式法求解此题, 此时关键是在分子中分解出项来, 可以一般的运用待定系数法完成这一工作, 办法是设: , (2)将上面等式的左边展开, 有: ,故而, . 解得, .从而原函数; )当时, , , 此时, 等号成立, 当且仅当. )当时, , , 此时有, 等号成立, 当且仅当. 综上, 原函数的值域为: . 不等式法利用基本不等式,求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时需要用到拆项、添项和两边平方等技巧。 例3. 求函数的值域。解:原函数变形为:当且仅当即当时,等号成立故原函数的值域为: 例4

6、. 求函数的值域。解: 当且仅当,即当时,等号成立。由可得:故原函数的值域为:十、有界性法:利用某些函数有界性求得原函数的值域。例1:求函数的值域。解:由函数的解析式可以知道,函数的定义域为,对函数进行变形可得,(,),函数的值域为形如可解出Yr 范围,从而求出其值域或最值。例2求函数的值域解析:函数的有界性由得例3:求函数的值域。 例4:求函数的值域。 十一、数型结合法:函数图像是掌握函数的重要手段,利用数形结合的方法,根据函数图像求得函数值域,是一种求值域的重要方法。当函数解析式具有某种明显的几何意义(如两点间距离,直线的斜率、截距等)或当一个函数的图象易于作出时,借助几何图形的直观性可求

7、出其值域。例1:求函数的值域。解: ,的图像如图所示,由图像知:函数的值域为以上是我们学习函数之后,关于求函数值域的一些方法,随着以后学习的进一步深入,我们还会学到其它的一些有关求函数值域的方法。根据函数的结构特征,赋予几何图形,数形结合。例2:求函数的值域。点拨:将原函数变形,构造平面图形,由几何知识,确定出函数的值域。解:原函数变形为作一个长为4、宽为3的矩形ABCD,再切割成12个单位正方形。设HK=,则EK=2,KF=2,AK=,KC= 。由三角形三边关系知,AK+KCAC=5。当A、K、C三点共线时取等号。原函数的知域为y|y5。例3如例4求函数的值域。分析与解答:令,则,原问题转化

8、为 :当直线与圆在直角坐标系的第一象限有公共点时,求直线的截距的取值范围。由图1知:当经过点时,;当直线与圆相切时,。所以:值域为例4. 求函数的值域。解:将函数变形为:上式可看成定点A(3,2)到点P(x,0)的距离与定点到点的距离之差。即:由图可知:(1)当点P在x轴上且不是直线AB与x轴的交点时,如点,则构成,根据三角形两边之差小于第三边,有即:(2)当点P恰好为直线AB与x轴的交点时,有综上所述,可知函数的值域为:注:由例17,18可知,求两距离之和时,要将函数式变形,使A、B两点在x轴的两侧,而求两距离之差时,则要使A,B两点在x轴的同侧。十二、复合函数法:对函数,先求的值域充当的定

9、义域,从而求出的值域的方法。例1、求函数 的值域(复合函数法)设 ,则 例2:求函数的值域。 十三、非负数法根据函数解析式的结构特征,结合非负数的性质,可求出相关函数的值域。例1、(1)求函数的值域。 (2)求函数的值域。解析:(1), 故 所求函数的值域为 。(2),原函数可化为 ,即 , 当时, ,解得又 , 所以 ,故 所求函数的值域为 。(不等式性质法)例2:求下列函数的值域: (1)y=; (2)y=; (3)y= (4)y=10-; (2)y=; (3)y=十四、导数法 若函数在内可导, 可以利用导数求得在内的极值, 然后再计算在,点的极限值. 从而求得的值域.例1: 求函数在内的

10、值域.分析:显然在可导,且. 由得的极值点为. . . 所以, 函数的值域为. 十五、“平方开方法” 求函数值域的方法有很多种,如:“配方法”、“单调性法”、“换元法”、“判别式法”以及“平方开方法”等等.每一种方法都适用于求某一类具有共同特征的函数的值域.本文将指出适合采用“平方开方法”的函数有哪些共同的特征以及“平方开方法”的运算步骤,并给出四道典型的例题.1.适合采用“平方开方法”的函数特征设()是待求值域的函数,若它能采用“平方开方法”,则它通常具有如下三个特征:(1)的值总是非负,即对于任意的,恒成立;(2)具有两个函数加和的形式,即();(3)的平方可以写成一个常数与一个新函数加和

11、的形式,即(,为常数),其中,新函数()的值域比较容易求得.2.“平方开方法”的运算步骤 若函数()具备了上述的三个特征,则可以将先平方、再开方,从而得到(,为常数).然后,利用的值域便可轻易地求出的值域.例如,则显然.3.应用“平方开方法”四例能够应用“平方开方法”求值域的函数不胜枚举,这里仅以其中四道典型的例题来演示此法在解决具体问题时的技巧. 例1 求函数(,)的值域.解:首先,当时,;其次,是函数与的和;最后, 可见,函数满足了采用“平方开方法”的三个特征.于是,对平方、开方得().这里,().对根号下面的二次函数采用“配方法”,即可求得的值域为.于是,的值域为.例2 求函数(,)的值

12、域.解:显然,该题就是例1的推广,且此题的也满足了采用“平方开方法”的三个特征.于是,对平方、开方得().这里,().对根号下面的二次函数采用“配方法”,即可求得的值域仍为.于是,的值域也仍为.例3 求函数()的值域.解:参照例1的验证步骤,显然,此题的也满足了采用“平方开方法”的三个特征.于是,对平方、开方得().这里,().易知,的值域为.于是,的值域为.例4 求函数()的值域.解:参照例1的验证步骤,显然,此题的也满足了采用“平方开方法”的三个特征.于是,对平方、开方得().这里,().易知,的值域为.于是,的值域为.例5 求函数 的值域解:(平方法)函数定义域为: 10xy平方法)函数

13、定义域为: 十六、映射法原理:因为在定义域上x与y是一一对应的。故两个变量中,若知道一个变量范围,就可以求另一个变量范围。 例1. 求函数的值域。解:定义域为由得故或解得故函数的值域为多种方法综合运用 例1 求函数的值域。解:令,则(1)当时,当且仅当t=1,即时取等号,所以(2)当t=0时,y=0。综上所述,函数的值域为:注:先换元,后用不等式法 例2. 求函数的值域。解:令,则当时,当时,此时都存在,故函数的值域为例3.求函数 的值域解:(图象法)如图,值域为例4.求函数 的值域解:(复合函数法)令,则 由指数函数的单调性知,原函数的值域为例5.求函数的值域解:(三角代换法) 设 小结:(1)若题目中含有,则可设 (2)若题目中含有则可设,其中(3)若题目中含有,则可设,其中01(4)若题目中含有,则可设,其中(5)若题目中含有,则可设其中例6、求函数 的值域解法一:(逆求法) 2解法二:(复合函数法)设 ,则 解法三:(判别式法)原函数可化为 1) 时 不成立2) 时,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 建筑/环境 > 施工组织

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号