概率论复习提纲

上传人:公**** 文档编号:489001494 上传时间:2022-12-17 格式:DOC 页数:11 大小:229.01KB
返回 下载 相关 举报
概率论复习提纲_第1页
第1页 / 共11页
概率论复习提纲_第2页
第2页 / 共11页
概率论复习提纲_第3页
第3页 / 共11页
概率论复习提纲_第4页
第4页 / 共11页
概率论复习提纲_第5页
第5页 / 共11页
点击查看更多>>
资源描述

《概率论复习提纲》由会员分享,可在线阅读,更多相关《概率论复习提纲(11页珍藏版)》请在金锄头文库上搜索。

1、概率论复习提纲第一章 随机事件和概率 (11)减法公式P(A-B)=P(A)-P(AB)当B A时,P(A-B)=P(A)-P(B)当A=时,P( )=1- P(B)第二章 随机变量及其分布 (5)八大分布0-1分布P(X=1)=p, P(X=0)=q二项分布在 重贝努里试验中,设事件 发生的概率为 。事件 发生的次数是随机变量,设为 ,则 可能取值为 。, 其中 ,则称随机变量 服从参数为 , 的二项分布。记为 。当 时, , ,这就是(0-1)分布,所以(0-1)分布是二项分布的特例。泊松分布设随机变量 的分布律为, , ,则称随机变量 服从参数为 的泊松分布,记为 或者P( )。泊松分布

2、为二项分布的极限分布(np=,n)。超几何分布随机变量X服从参数为n,N,M的超几何分布,记为H(n,N,M)。几何分布,其中p0,q=1-p。随机变量X服从参数为p的几何分布,记为G(p)。均匀分布设随机变量 的值只落在a,b内,其密度函数 在a,b上为常数 ,即axb其他,则称随机变量 在a,b上服从均匀分布,记为XU(a,b)。分布函数为axb0, xb。当ax1x2b时,X落在区间( )内的概率为。指数分布,0, ,其中 ,则称随机变量X服从参数为 的指数分布。X的分布函数为,x0, D(Y)0,则称为X与Y的相关系数,记作 (有时可简记为 )。| |1,当| |=1时,称X与Y完全相

3、关:完全相关而当 时,称X与Y不相关。以下五个命题是等价的: ;cov(X,Y)=0;E(XY)=E(X)E(Y);D(X+Y)=D(X)+D(Y);D(X-Y)=D(X)+D(Y).协方差矩阵混合矩对于随机变量X与Y,如果有 存在,则称之为X与Y的k+l阶混合原点矩,记为 ;k+l阶混合中心矩记为:(6)协方差的性质(i) cov (X, Y)=cov (Y, X);(ii) cov(aX,bY)=ab cov(X,Y);(iii) cov(X1+X2, Y)=cov(X1,Y)+cov(X2,Y);(iv) cov(X,Y)=E(XY)-E(X)E(Y).(7)独立和不相关(i) 若随机变

4、量X与Y相互独立,则 ;反之不真。(ii) 若(X,Y)N( ),则X与Y相互独立的充要条件是X和Y不相关。第五章 大数定律和中心极限定理(1)大数定律切比雪夫大数定律设随机变量X1,X2,相互独立,均具有有限方差,且被同一常数C所界:D(Xi)C(i=1,2,),则对于任意的正数,有特殊情形:若X1,X2,具有相同的数学期望E(XI)=,则上式成为伯努利大数定律设是n次独立试验中事件A发生的次数,p是事件A在每次试验中发生的概率,则对于任意的正数,有伯努利大数定律说明,当试验次数n很大时,事件A发生的频率与概率有较大判别的可能性很小,即这就以严格的数学形式描述了频率的稳定性。辛钦大数定律设X

5、1,X2,Xn,是相互独立同分布的随机变量序列,且E(Xn)=,则对于任意的正数有(2)中心极限定理列维林德伯格定理设随机变量X1,X2,相互独立,服从同一分布,且具有相同的数学期望和方差: ,则随机变量的分布函数Fn(x)对任意的实数x,有此定理也称为独立同分布的中心极限定理。棣莫弗拉普拉斯定理设随机变量 为具有参数n, p(0p1)的二项分布,则对于任意实数x,有第六章 样本及抽样分布(1)数理统计的基本概念总体在数理统计中,常把被考察对象的某一个(或多个)指标的全体称为总体(或母体)。我们总是把总体看成一个具有分布的随机变量(或随机向量)。个体总体中的每一个单元称为样品(或个体)。样本我

6、 们把从总体中抽取的部分样品 称为样本。样本中所含的样品数称为样本容量,一般用n表示。在一般情况下,总是把样本看成是n个相互独立的且与总体有相同分 布的随机变量,这样的样本称为简单随机样本。在泛指任一次抽取的结果时, 表示n个随机变量(样本);在具体的一次抽取之后, 表示n个具体的数值(样本 值)。我们称之为样本的两重性。第七章 参数估计(1)点估计矩估计设总体X的分布中包含有未知数 ,则其分布函数可以表成 它的k阶原点矩 中也包含了未知参数 ,即 。又设 为总体X的n个样本值,其样本的k阶原点矩为这样,我们按照“当参数等于其估计量时,总体矩等于相应的样本矩”的原则建立方程,即有由上面的m个方

7、程中,解出的m个未知参数 即为参数( )的矩估计量。若 为 的矩估计, 为连续函数,则 为 的矩估计。极大似然估计当总体X为连续型随机变量时,设其分布密度为 ,其中 为未知参数。又设 为总体的一个样本,称为样本的似然函数,简记为Ln.当总体X为离型随机变量时,设其分布律为 ,则称为样本的似然函数。若似然函数 在 处取到最大值,则称 分别为 的最大似然估计值,相应的统计量称为最大似然估计量。若 为 的极大似然估计, 为单调函数,则 为 的极大似然估计。(2)估计量的评选标准无偏性设 为未知参数 的估计量。若E ( )= ,则称 为 的无偏估计量。E( )=E(X), E(S2)=D(X)有效性设

8、 和 是未知参数 的两个无偏估计量。若 ,则称 有效。一致性设 是 的一串估计量,如果对于任意的正数 ,都有则称 为 的一致估计量(或相合估计量)。若 为 的无偏估计,且 则 为 的一致估计。只要总体的E(X)和D(X)存在,一切样本矩和样本矩的连续函数都是相应总体的一致估计量。(3)区间估计置信区间和置信度设总体X含有一个待估的未知参数 。如果我们从样本 出发,找出两个统计量 与 ,使得区间 以 的概率包含这个待估参数 ,即那么称区间 为 的置信区间, 为该区间的置信度(或置信水平)。单正态总体的期望和方差的区间估计设 为总体 的一个样本,在置信度为 下,我们来确定 的置信区间 。具体步骤如

9、下:(i)选择样本函数;(ii)由置信度 ,查表找分位数;(iii)导出置信区间 。已知方差,估计均值(i)选择样本函数(ii) 查表找分位数(iii)导出置信区间未知方差,估计均值(i)选择样本函数(ii)查表找分位数(iii)导出置信区间方差的区间估计(i)选择样本函数(ii)查表找分位数(iii)导出 的置信区间第八章 假设检验基本思想假设检验的统计思想是,概率很小的事件在一次试验中可以认为基本上是不会发生的,即小概率原理。为 了检验一个假设H0是否成立。我们先假定H0是成立的。如果根据这个假定导致了一个不合理的事件发生,那就表明原来的假定H0是不正确的,我们拒绝接受 H0;如果由此没有

10、导出不合理的现象,则不能拒绝接受H0,我们称H0是相容的。与H0相对的假设称为备择假设,用H1表示。这里所说的小概率事件就是事件 ,其概率就是检验水平,通常我们取=0.05,有时也取0.01或0.10。基本步骤假设检验的基本步骤如下:(i) 提出零假设H0;(ii) 选择统计量K;(iii) 对于检验水平查表找分位数;(iv) 由样本值 计算统计量之值K;将 进行比较,作出判断:当 时否定H0,否则认为H0相容。两类错误第一类错误当H0为真时,而样本值却落入了否定域,按照我们规定的检验法则,应当否定H0。这时,我们把客观上H0成立判为H0为不成立(即否定了真实的假设),称这种错误为“以真当假”

11、的错误或第一类错误,记 为犯此类错误的概率,即P否定H0|H0为真= ;此处的恰好为检验水平。第二类错误当H1为真时,而样本值却落入了相容域,按照我们规定的检验法则,应当接受H0。这时,我们把客观上H0。不成立判为H0成立(即接受了不真实的假设),称这种错误为“以假当真”的错误或第二类错误,记 为犯此类错误的概率,即P接受H0|H1为真= 。两类错误的关系人们当然希望犯两类错误的概率同时都很小。但是,当容量n一定时, 变小,则 变大;相反地, 变小,则 变大。取定 要想使 变小,则必须增加样本容量。在实际使用时,通常人们只能控制犯第一类错误的概率,即给定显著性水平。大小的选取应根据实际情况而定。当我们宁可“以假为真”、而不愿“以真当假”时,则应把取得很小,如0.01,甚至0.001。反之,则应把取得大些。第一章讲随机事件及其概率的一些相关公式和运用。很多高中就有涉及,如果你真理不清其中的关系,我建议可以先画韦恩图取得一个感性的认识,再去推导记忆公式。我把公式分为两类:基本公式,条件概率公式。当然基本概念是必须搞清楚的,这一章大多数基本概念大家都比较熟悉,除了条件概率相对陌生。我相信大家都不会存在概念上的问题。基本公式就是一些定律和性质公式,已经很熟悉的公式跳过,相对陌生的重点记忆一下,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 中学教育 > 试题/考题 > 初中试题/考题

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号