压电薄膜传感器中文技术手册

上传人:ni****g 文档编号:488423082 上传时间:2023-07-01 格式:DOCX 页数:77 大小:2.68MB
返回 下载 相关 举报
压电薄膜传感器中文技术手册_第1页
第1页 / 共77页
压电薄膜传感器中文技术手册_第2页
第2页 / 共77页
压电薄膜传感器中文技术手册_第3页
第3页 / 共77页
压电薄膜传感器中文技术手册_第4页
第4页 / 共77页
压电薄膜传感器中文技术手册_第5页
第5页 / 共77页
点击查看更多>>
资源描述

《压电薄膜传感器中文技术手册》由会员分享,可在线阅读,更多相关《压电薄膜传感器中文技术手册(77页珍藏版)》请在金锄头文库上搜索。

1、压电薄膜传感器技术手册第一部分第二部分第三部分第四部分第五部分第六部分第七部分第八部分第九部分第十部分第十一部分第十二部分目录表引言背景压电薄膜特性典型压电薄膜元件工作特性引线装接技术频率响应压电薄膜低频响应温度效应压电膜电缆及其特性压电基础热电基础基本电路概念电缆制造开关冲击传感器体育运动记分传感器乐器交通传感器振动传感音乐拾音机器监控轴承磨损传感器风扇叶片气流传感器断纱传感器自动售货机用传感器加速度计超声应用医用成像NDT无损探伤)液位传感器第十三部分第十四部分第十五部分扬声器话筒声纳将来的应用有源振动阻尼硅基传感器灵敏表皮压电薄膜的应用压电薄膜论文索超声油墨位面感测的讨论精量电子(深圳)

2、有限公司第十六部分第十七部分第十八部分引言传感器材料是将一种形式的能量转换为另一种形式的能量,并被广泛地应用在传感探测方面。微处理器应用的巨大增长推动了传感器在多种应用方面的需求。今天,在180亿美元的全球传感器市场中压电聚合物传感器跻身在最快速发展的技术行列之中。像任何其他新技术一样,在很多应用中,“压电薄膜”已被考虑用作传感器的解决方案。自从压电膜聚合体被发现以来的20年中,这项技术已日趋成熟,实际应用层出不穷,技术的商业化进程正在加速。本手册对压电聚合体技术、术语、特性以及传感器设计思考等提供了综述,同时还探索了近年来业已成功开发出来的诸多传感器的应用项目。我们很高兴有机会在解决独特的传

3、感方面问题是我们的应用工程师们特有的实力。您的设计中考虑压电膜传感器的应用时为您提供帮助。“压电”,希腊语叫做“压力”电,是在100多年前由Gurie兄弟所发现的。他们发现,石英在电场的作用下会改变其外形尺寸,而相反,当受到机械变形时,则产生出电荷来。这项技术的首次实际应用是由另一位法国人Langevin在1920年实现的,他研究出了一种用于水下声音的晶体发射器和接收器,即:第一部“声纳”。二次世界大战前,研究人员发现,有些陶瓷材料在高极化电压的作用下会产生压电特性,这一过程类似于铁性材料的磁化。到60年代,研究人员就已发现,鲸鱼的骨和腱内部存在着微弱的压电效应。于是开始了对其他有可能具有压电

4、效应的有机材料的认真探索。1969年,Kawai发现在极化的含氟聚合物、聚偏氟乙烯(PVDF中有很高的压电能力。其他材料,如尼龙和PVC和其他铁电材料一样PVDF也和其他铁电材料一样,PVDF也图1.PVDF薄膜的典型红外吸收频谱具有很高的热电特性,在响应也都表现出压电效应,但没有一种能像PVDF及其共聚物一样呈现那么高的压电效应温度的变化时,可以产生电荷。PVD!对720 P m波长的红外能具 有 很强的吸收性(见图1),覆盖了人体 热的相同波长频谱。因止匕,PVDF可以 制成很有用途的人 体运动传感器以及热 电传感器 用于更为复杂的其他应用如夜 视光导摄像管摄像机和激光束 成像传感 器。压

5、电薄膜采用合适 的菲涅尔透镜可 以探测到50英尺以外的人体运动”如dm曲luTij1 孟 56? 8 ; I) 12 1S 卫.汶亡 戏0 2500 2 逊4自l-rc 1 % 10X血赵 锁就,并已被应用在人造卫星的红外地平探测器上。度极限也达到了利用PVDF无法达到的程度。这些成就包括超薄的(200A)离心浇成的覆层,从而开拓出新型硅基传感器应用和壁厚超过1200Pm的声纳用圆柱体传感器的可能性。压电薄膜特性压电薄膜是一种柔性, 它的主要特性参数如下:质轻,高韧度塑料膜并可制成多种厚度和较大面积。作为一种传感器,+宽频带0.001Hz109HZ-86+宽动态范围(1010Psi或口torr

6、Mbar)律低的声阻抗与水、人体组织和粘胶体系接近+高弹性柔顺性+高电压输出对同样受力条件,比压电陶瓷高10倍+高介电强度可耐受强电场作用(75V/Pm大部分压电陶瓷退极化+高机械强度和抗冲击(109010Pascal模数)律高稳定性耐潮湿(吸湿性0.02%)、多数化学品、氧化剂、强紫外线和核辐射*可加工成特定形状*可以用市售胶粘合压电膜的一个主要优点就是它有低的声阻抗 他有机材料的声阻抗。例如,压电膜的声阻抗(,其声阻抗比压电陶瓷更接近水,人体 组织和其Zc=pu)只相当于水的2.6倍,而压电陶瓷的声阻抗通常是水的11倍多。一个接近的阻抗匹配便于更有效地在水和人体组织中转导声音信号。但压电膜

7、的确有某些应用上的限制,与压电陶瓷相比,电机发送器就相对弱些,尤其是在谐振和低频应用上。共聚体薄膜的最高使用/储存温度可高达135C。而且,若把膜上的电极外露,它对电磁辐射也敏感。有良好的屏蔽技术用于电磁干扰和射频干扰的环境?表1列出了压电膜的典型特性参数。表2对PVDF聚合体的压电特性和常用的二种压电陶瓷材料的特性进行了比较。压电膜的光学传输特性请参照图1,在720Pm波长上对红外能M有很强的吸收性,从而使其成为侵入检测和能量管理器件的理想选择。PVDF薄膜通常很薄、柔软、密度低、灵敏度极好,且机械韧性也好,压电膜的柔顺性比压电陶瓷高出10倍,当压电聚合物被挤成薄膜时,可以直接贴附在机件表面

8、而不会影响机件的机械运动。压电膜非常适用于需要大带宽和高灵敏度的应变传感应用。作为一种执行器件,聚合物低的声阻抗,使其可以有效地用来向空气和其他气体中传送能表1,压电薄膜典型特性参数表示付号参数PVDF共聚体单位T厚度9,28,52,110各种um(micron,10d3i压电反受福数2311d33-33-38g31压电应力常数21616g33-330-542k3i电一机耦合常数12%20)Kt%4,%25-29%C电容380(28Pm)68(100PPF/cm21kH;YYoung模量2-m)3-59210N/mVo声速拉伸厚度4.A2.3103m/s2.22.4P热电系数2304010-6

9、C/nfKE介电常数106-11365-7510-12F/m/0相对介电常数12-137-8Pm质量密度1.781.82310kg/mPe体电阻率10131014电阻计R表面金属化电阻率2.2.0Q/平方(CuNi)R0.A0.Q/平方(Ag油墨)tan损耗角正切10.0210.0151kHz屈服强度45-5520.30106N/M(拉伸轴)温度范围-40至80-40至115-145C吸水性0.020.02%HO最图工作电压750(30)750(30)V/mil(V/Pm),DC,25C击穿电压2000(80)2000(80)V/mil(V/Pm),DC,25C表2压电材料比较表特性单位PVD

10、F膜PZTBaTi03密度103kg/一31.787.55.7相对介电常数m/0121,2001,700d31常数-122311078g31常数(10)C/N0-)Vm/21615k31常数N%at1kHz1203021声阻抗?八6、22.7330典型压电膜元件的工作特性DTI元件是一个在压电聚合体基体上模切15x40mn并在12x30mn有效面积上两面印有银墨电极的标准MSI压电膜结构。1、电一机变换_6(1方向)25x10-12mN,700x10MV(3方向)33x10-12m/V2、机一电变换33(1方向)12x10-Vy/,400x10-V/Pm14.4V/N3(3方向)13x10V/

11、N3、热一电变换8V/K(25C)4、电容1.36X10-9F,耗散系数0.01810kHZ阻抗10kZH2KQ5、最大工作电压DC:280V(1方向上,产生7Pm位移M)AC:840V(1方向上,产生21Pm位移M)&最大受力(d31方向上,断裂)69kgF(电压输出8301275V图4,DT1元件. 1JH cp .它无法应用到太低频电一机变换压电膜一般是不可能实现大的位移M和力的,例如在设计扬声器时这一点是显而易见的,因为其低频性能(500Hz以下)是很有限的。甚至一块大面积的压电膜在低频时也无法产生出高幅压力脉冲。正如我们从目前的超声波空间测距传感器(4050KHz的设计和医用超声波成

12、像应用中所了解到的,率和太高的超声频率上。就超声测距而言,压电膜元件的高度控制垂宜波瓣,而传感器的曲率和宽度则控制着水平波瓣,压电膜测距换能器可获得360视野,测距目标从几厘米到几米并有很高分辨率?双压电膜结构(类似双金属片),可以使二片反接元件微小的位移M转变为很明显的扰曲运压电膜传感器技术手册动。依此原理可制成小型的风叶片和光学反射镜。这类元件仅消耗非常低的能源(因为是容性的)由于其高电容,大型元件可能就较难驱动,尤其是用变压器提供驱动电压时更是这样。设计优良的放大器是十分重要的。虽然所产生的力很小,但压电膜却可以用来在非常宽的频率范围上激励其他机械结构.如果再配合另外的压电膜器件来接受所

13、产生的振动,整个系统可拥有很高的动态范围,尽管膜对一个结构的谐振点所产生的“插入损失”一般为一66dB如果在二个元件之间加上足够的增益,该结构件就会在其固有频率上产生自振荡,正像MSI公司在制造压力、负荷和液位传感器方面所开创的“振鸣”技术那样。这种谐振的机械系统,并不需要高电压驱动。放大器电路靠双轨运算放大器运行或者干脆用一单独的9伏电池。从分析角度来看,当压电膜也应用来监测结果时,要低些的电压,如:70mVrms的频谱分析仪的噪声源,就足以将机械能引入到结构中。机电变换作为机械动作输入的接收器而言,压电膜的灵敏度是使人吃惊的。最简单形式的压电膜就可以起到一个动态应变计的作用,而且又不需要外部供给电源,且产生出来的信号甚至大于应变计经放大后的信号。因此,频率响应并不受任何为满足高增益而产生的限制影响,上限是给定传感器的波

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 商业/管理/HR > 营销创新

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号