《多元回归分析SPSS案例》由会员分享,可在线阅读,更多相关《多元回归分析SPSS案例(12页珍藏版)》请在金锄头文库上搜索。
1、-多元回归分析在大多数的实际问题中,影响因变量的因素不是一个而是多个,我们称这类回问题为多元回归分析。可以建立因变量y与各自变量*j(j=1,2,3,n)之间的多元线性回归模型:其中:b0是回归常数;bk(k=1,2,3,n)是回归参数;e是随机误差。多元回归在病虫预报中的应用实例:*地区病虫测报站用相关系数法选取了以下4个预报因子;*1为最多连续10天诱蛾量(头);*2为4月上、中旬百束小谷草把累计落卵量(块);*3为4月中旬降水量(毫米),*4为4月中旬雨日(天);预报一代粘虫幼虫发生量y头/m2。分级别数值列成表2-1。 预报量y:每平方米幼虫010头为1级,1120头为2级,2140头
2、为3级,40头以上为4级。 预报因子:*1诱蛾量0300头为l级,301600头为2级,6011000头为3级,1000头以上为4级;*2卵量0150块为1级,15l300块为2级,301550块为3级,550块以上为4级;*3降水量010.0毫米为1级,10.113.2毫米为2级,13.317.0毫米为3级,17.0毫米以上为4级;*4雨日02天为1级,34天为2级,5天为3级,6天或6天以上为4级。 表2-1 *1 *2 *3 *4 y年 蛾量 级别 卵量 级别 降水量 级别 雨日 级别 幼虫密度 级别 19601022411214.31211011961300144030.1111411
3、96269936717.511191196318764675417.147455419654318011.9121111966422220101013119678063510311.82322831976115124020.612171197171831460418.444245419728033630413.433226319735722280213.224216219742641330342.243219219751981165271.84532331976461214017.515328319777693640444.7432444197825516510101112数据保存在DATA6
4、-5.SAV文件中。1准备分析数据 在SPSS数据编辑窗口中,创立年份、蛾量、卵量、降水量、雨日和幼虫密度变量,并输入数据。再创立蛾量、卵量、降水量、雨日和幼虫密度的分级变量*1、*2、*3、*4和y,它们对应的分级数值可以在SPSS数据编辑窗口过计算产生。编辑后的数据显示如图2-1。图2-1或者翻开已存在的数据文件DATA6-5.SAV。2启动线性回归过程单击SPSS主菜单的Analyze下的Regression中Linear项,将翻开如图2-2所示的线性回归过程窗口。图2-2 线性回归对话窗口3) 设置分析变量设置因变量:用鼠标选中左边变量列表中的幼虫密度y变量,然后点击Dependent
5、栏左边的向右拉按钮,该变量就移到Dependent因变量显示栏里。设置自变量:将左边变量列表中的蛾量*1、卵量*2、降水量*3、雨日*4变量,选移到Independent(S)自变量显示栏里。 设置控制变量: 本例子中不使用控制变量,所以不选择任何变量。选择标签变量: 选择年份为标签变量。选择加权变量: 本例子没有加权变量,因此不作任何设置。4回归方式本例子中的4个预报因子变量是经过相关系数法选取出来的,在回归分析时不做筛选。因此在Method框中选中Enter选项,建立全回归模型。 5设置输出统计量单击Statistics按钮,将翻开如图2-3所示的对话框。该对话框用于设置相关参数。其中各项
6、的意义分别为:图2-3 Statistics对话框Regression Coefficients回归系数选项:Estimates输出回归系数和相关统计量。Confidence interval回归系数的95%置信区间。Covariance matri*回归系数的方差-协方差矩阵。本例子选择Estimates输出回归系数和相关统计量。Residuals残差选项:Durbin-WatsonDurbin-Watson检验。Casewise diagnostic输出满足选择条件的观测量的相关信息。选择该项,下面两项处于可选状态:Outliers outside standard deviations选
7、择标准化残差的绝对值大于输入值的观测量;All cases选择所有观测量。本例子都不选。 其它输入选项Model fit输出相关系数、相关系数平方、调整系数、估计标准误、ANOVA表。R squared change输出由于参加和剔除变量而引起的复相关系数平方的变化。Descriptives输出变量矩阵、标准差和相关系数单侧显著性水平矩阵。Part and partial correlation相关系数和偏相关系数。Collinearity diagnostics显示单个变量和共线性分析的公差。本例子选择Model fit项。 6绘图选项在主对话框单击Plots按钮,将翻开如图2-4所示的对话
8、框窗口。该对话框用于设置要绘制的图形的参数。图中的*和Y框用于选择*轴和Y轴相应的变量。图2-4Plots绘图对话框窗口左上框中各项的意义分别为: DEPENDNT因变量。 ZPRED标准化预测值。 ZRESID标准化残差。 DRESID删除残差。 ADJPRED调节预测值。 SRESID学生氏化残差。 SDRESID学生氏化删除残差。 Standardized Residual Plots设置各变量的标准化残差图形输出。其中共包含两个选项:Histogram用直方图显示标准化残差。Normal probability plots比较标准化残差与正态残差的分布示意图。Produce all p
9、artial plot偏残差图。对每一个自变量生成其残差对因变量残差的散点图。本例子不作绘图,不选择。7) 保存分析数据的选项在主对话框里单击Save按钮,将翻开如图2-5所示的对话框。图2-5 Save对话框Predicted Values预测值栏选项:Unstandardized 非标准化预测值。就会在当前数据文件中新添加一个以字符PRE_开头命名的变量,存放根据回归模型拟合的预测值。Standardized 标准化预测值。Adjusted 调整后预测值。S.E. of mean predictions 预测值的标准误。本例选中Unstandardized非标准化预测值。 Distance
10、s距离栏选项:Mahalanobis: 距离。Cooks: Cook距离。Leverage values: 杠杆值。Prediction Intervals预测区间选项:Mean: 区间的中心位置。Individual: 观测量上限和下限的预测区间。在当前数据文件中新添加一个以字符LICI_开头命名的变量,存放预测区间下限值;以字符UICI_开头命名的变量,存放预测区间上限值。Confidence Interval:置信度。本例不选。Save to New File保存为新文件:选中Coefficient statistics项将回归系数保存到指定的文件中。本例不选。 E*port model
11、 information to *ML file 导出统计过程中的回归模型信息到指定文件。本例不选。Residuals 保存残差选项:Unstandardized非标准化残差。Standardized标准化残差。Studentized学生氏化残差。Deleted删除残差。Studentized deleted学生氏化删除残差。本例不选。Influence Statistics 统计量的影响。DfBeta(s)删除一个特定的观测值所引起的回归系数的变化。Standardized DfBeta(s)标准化的DfBeta值。DiFit 删除一个特定的观测值所引起的预测值的变化。Standardize
12、d DiFit标准化的DiFit值。Covariance ratio删除一个观测值后的协方差矩隈的行列式和带有全部观测值的协方差矩阵的行列式的比率。本例子不保存任何分析变量,不选择。8其它选项在主对话框里单击Options按钮,将翻开如图2-6所示的对话框。图2-6 Options设置对话框Stepping Method Criteria框用于进展逐步回归时部数值的设定。其中各项为:Use probability of F如果一个变量的F值的概率小于所设置的进入值Entry,则这个变量将被选入回归方程中;当变量的F值的概率大于设置的剔除值Removal,则该变量将从回归方程中被剔除。由此可见,
13、设置Use probability of F时,应使进入值小于剔除值。Ues F value如果一个变量的F值大于所设置的进入值Entry,则这个变量将被选入回归方程中;当变量的F值小于设置的剔除值Removal,则该变量将从回归方程中被剔除。同时,设置Use F value时,应使进入值大于剔除值。本例是全回归不设置。Include constant in equation选择此项表示在回归方程中有常数项。本例选中Include constant in equation选项在回归方程中保存常数项。Missing Values框用于设置对缺失值的处理方法。其中各项为:E*clude cases listwise剔除所有含有缺失值的观测值。E*chude cases pairwise仅剔除参与统计分析计算的变量中含有缺失值的观测量。Replace with mean用变量的均值取代缺失值。本例选中E*clude cases listwise。9提交执行在主对话框里单击OK,提交执行,结果将显示在输出窗口中。主要结果见表2-2至表2-4。10) 结果分析 主要结果: