文档详情

第8章干刻工艺

汽***
实名认证
店铺
DOCX
491.59KB
约26页
文档ID:488129119
第8章干刻工艺_第1页
1/26

第八章干刻工艺8.1 Dry Etch工序的目的广义而言,所谓的刻蚀技术,是将显影后所产生的光阻图案忠实地转印到光阻下的材质 上,形成由光刻技术定义的图形它包含了将材质整面均匀移除及图案选择性部分去除,可 分为湿式刻蚀(wet etching)和干式刻蚀(dry etching)两种技术第五章中已经对湿式刻蚀进行 了较详细的介绍湿式刻蚀具有待刻蚀材料与光阻及下层材质良好的刻蚀选择比 (selectivity)o然而,由于化学反应没有方向性,因而湿式刻蚀是各向同性刻蚀当刻蚀溶 液做纵向刻蚀时,侧向的刻蚀将同时发生,进而造成底切(Undercut)现象,导致图案线宽 失真,如下图所示Bias■'Under Cut::图8.1底切现象自1970年以来,元件制造首先开始采用电浆刻蚀技术(也叫等离子体刻蚀技术),人们 对于电浆化学性的了解与认识也就越来越深在现今的半导体集成电路或LCD制造过程中, 要求精确地控制各种材料尺寸至次微米大小,而且还必须具有极高的再现性,电浆刻蚀是现 今技术中唯一能极有效率地将此工作在高良率下完成的技术,因此电浆刻蚀便成为半导体制 造以及TFT LCD Array制造中的主要技术之一。

干式刻蚀通常指利用辉光放电(glow discharge)方式,产生包含离子、电子等带电粒子 以及具有高度化学活性的中性原子、分子及自由基的电浆,来进行图案转印(pattern transfer) 的刻蚀技术干法刻蚀是亚微米尺寸下刻蚀器件的最主要方法,广泛应用于半导体或LCD 前段制程在本章节中,将针对干刻蚀技术加以说明8.2 Dry Etch的分类及工艺的基本原理8.2.1蚀刻技术中的术语1. 各向同性与各向异性蚀刻(Isotropic and Anisotropic Etching)不同的蚀刻机制将对蚀刻后的轮廓(Profile)产生直接的影响如图8.2所示,纯粹的化学蚀刻通常没有方向选择性,上下左右刻蚀速度相同,蚀刻后将形成圆弧的轮廓,并在遮罩 (Mask)下形成底切(Undercut),这种刻蚀被称为各向同性蚀刻各向同性蚀刻通常对下层物 质具有很好的选择比,但线宽定义不易控制而各向异性蚀刻则是借助具有方向性的离子撞 击,进行特定方向的蚀刻,形成垂直的轮廓采用非等向性蚀刻,可定义出较细微的线宽上下左右刻姓速度相同 持定方向刻蚀图8.2各向同性与各向异性刻蚀2. 选择比(Selectivity )在刻蚀过程中,被刻蚀物质上层的遮罩物质(如光刻胶)或下层的物质这些本来不需要 被刻蚀的膜层也会同时遭到刻蚀,如图8.3所示待刻蚀光阻物就被刻 惶掉—•部分刻蚀前mas待刻蚀膜下.漫剂蚀后图8.3刻蚀前和刻蚀后比较选择比即为不同物质之间蚀刻速率的比值。

其中又可分为对遮罩物质的选择比及对待蚀 刻物质下层物质的选择比选择比要求越高越好,高选择比意味着只刻除想要刻去的那一部 分材料选择比可以表示为选择比=被刻蚀材料的速率/不需要被刻蚀材料的速率3. 负载效应(Loading Effect )负载效应就是当被蚀刻材质裸露在反应电浆或溶液时,面积较大者蚀刻速率比面积较小 者慢的情形这是由于反应物质在面积较大的区域中被消耗掉的程度较为严重,导致反应物质浓度变低,而蚀刻速率却又与反应物质浓度成正比关系,大部份的等向性蚀刻都有这种现 象4. RF 自偏压(self bias)电浆是等离子体,其内部正负离子相等,而如果解离腔体电极接上RF power,由于其电 极表面所带电荷的变换,会吸引正负离子及电子的接近,但因电子与带正电的原子核质量相 差甚多,使得在经过高频的变换过程后,电子与正离子逐渐分离,质量较小的电子受吸引加 速较快到达电极表面,使电极附近形成带负电的鞘层电压,这就是自偏压产生的原理这个 鞘层电压与等离子体之间存在电位差,从而会吸引正离子轰击基板表面,增加刻蚀的效应电子质景小速度大离于质景丈速度小十十—+++图8.4电子与正离子分离距舄(d)图8.5上下电极之间的电位分布8.2.2干刻蚀机制的分类在干式蚀刻中,随着制程参数和电浆状态的改变,可以区分为两种极端性质的蚀刻方 式即纯物理性蚀刻与纯化学反应性蚀刻,以及物理和化学混合作用刻蚀。

1. 物理刻蚀纯物理性蚀刻可视为一种物理溅镀(Sputte r)方式,它是利用辉光放电,将气体如Ar,解 离成带正电的离子,再利用自偏压(self bias)将离子加速,溅击在被蚀刻物的表面,而将 被蚀刻物质原子击出此过程乃完全利用物理上能量的转移,故谓之物理性蚀刻利用下电 极所产生的自偏压会吸引电浆中的正离子轰击基板表面,达到破坏膜层表面的刻蚀目的,这 种刻蚀的好处在于它很强的刻蚀方向性,从而可以获得高的各相异性刻蚀剖面,以达到好的 线宽控制目的其特点有♦各相异性刻蚀 /♦ 低刻蚀选择比 /♦并且因轰击效应使得被刻蚀膜层表面 J产生损伤♦反应副产物多为非挥发性,容易累积于 二 O ;正离子腔 体 内 部图8.6物理溅射(sputter)机理2. 化学刻蚀纯化学反应性蚀刻,则是利用各式能量源(RF,DC,microwave等)给予气体能量, 产生电浆,进而产生化学活性极强的原(分)子团,原(分)子团扩散至待蚀刻物质的表面,与 待蚀刻物质反应产生挥发性之反应生成物,最后挥发性生成物被真空设备抽离反应腔因这 种反应完全利用化学反应来达成,故谓之化学反应性蚀刻这种蚀刻方式相近于湿式蚀刻, 只是反应物及产物的状态由液态改变为气态,并利用电浆来促进蚀刻的速率。

因此纯化学反 应性蚀刻拥有类似于湿式蚀刻的优点及缺点,特点有♦各向同性刻蚀♦高刻蚀选择比♦高刻蚀速率♦低表面损伤♦反应腔体洁净度较易维持在半导体以及LCD制程中,纯化学反应性蚀刻应用的情况通常为不需做图形转换的步骤,如光阻图8.7化学反应性刻蚀机理的去除等反应物■■电离■.反应副•产物扩散t—'swwsi EM W反应物 扩散解吸附气态的化学反应——> 反应剃 产物图8.8基于化学反应机制的理想乾蚀刻过程如图8.8所示,一个仅基于化学反应机制的理想乾蚀刻过程可分为以下几个步骤:(1) 刻蚀气体进入腔体,在电场作用下产生电浆形态之蚀刻物种,如离子及自由基(Radicals);(2) 蚀刻物种藉由扩散、碰撞或场力移至待蚀刻物表面;(3)蚀刻物种吸附在待蚀刻物表面一段 时间;(4)进行化学反应并产生挥发性之生成物;(5)生成物脱离表面;(6)脱离表面之生 成物扩散至气体中并排出上述步骤中若其中一个停止发生,则整个反应将不再进行而其 中生成物脱离表面的过程最为重要,大部份的反应物种皆能与待蚀刻物表面产生快速的反 应,但除非生成物有合理的气压以致让其脱离表面,否则反应将不会发生3. 物理和化学刻蚀是靠再沉积的产物或聚合物,沉积于待蚀刻图形上,在表面的沉积物可被离子打掉,蚀刻可继续进行,而在侧壁上的沉积物,因未受离子的 撞击而保留下来,阻隔了表面与反应蚀刻气体的 接触,使得侧壁不受侵蚀,而获得各向异性蚀刻, 如图8.10所示。

物理和化学混合作用机理刻蚀能 获得好的线宽控制并有不错的选择比,因而目前 最具广泛使用的方法便是结合物理性蚀刻与化学♦;离子J ;活性基团单纯的物理或化学刻蚀所得到的刻蚀速率低于两者综合效应,如膜层表面先受到离子轰 击,破坏表层结构,再施以化学反应,可得到数倍以上的刻蚀速率物理和化学混合作用的 机理可以理解为离子轰击改善化学刻蚀作用,加入离子撞击的作用有二:一是将待蚀刻物质 表面的原子键结破坏,以加速蚀刻速率;二是将再沉积于待蚀刻物质表面的产物或聚合物 (Polymer)打掉,以便待蚀刻物质表面能再与反应蚀刻气体接触各向异性蚀刻的达成,则反应性蚀刻的方法图8.9物理和化学刻蚀机理n*11气体分子 中性粒子 自由基 离子 光阻 反底生成物&蔑子轰击光阻层,使光隔扶看在侧壁上.反应生成的副产物也会附看在侧壁..:;;******玦吸附在待刻蚀膜上的气体分子壹到离子撞击,进行分解,•分解物冒在傍刻理膜上, 离子再次握.迁H待刻诜膜快脱舞;上没有方向性的自由基与待刻蚀膜爰生反应进行刻蚀,生成易挥发的反应副产物&图8.10物理和化学刻蚀过程及侧壁的形成干法刻蚀也可以根据被刻蚀的材料类型来分在Array制程刻蚀工艺中,按材料分, 主要可分为非金属和金属刻蚀。

非金属刻蚀有a-Si/n+a-Si/SiNx刻蚀,可概括性的视为Si刻 蚀,其刻蚀气体可选用的有SF6及CFx系,一般在LCD制程选用SF6,因为其解离之F自 由基较多,反应速率较快,且制程较为洁净;CFx系由于在反应过程中,容易有CH化合物 产生,较少被选用,但CFx系可通入02,通过改变F/C比例及O与C的结合,减少CFx 与F的再结合,增加F自由基来加快刻蚀速率,并可调整Si/Oxide之选择比,制程控制的 弹性较SF6要高金属刻蚀则以Al刻蚀为主,一般采用Cl2作为刻蚀气体,可得到各向同 性的化学性刻蚀效果8.2.3干刻蚀模式及原理干刻蚀目前以PE及RIE模式使用较为普遍,两种均属于平行电极板的刻蚀,能量均采 用RF Power除了 PE及RIE机台,array制程最常用到的还有ICP模式1.反应离子刻蚀反应离子刻蚀(RIE)是Reactive Ion Etching的简称,它是一种采用化学反应和物理离 子轰击作用进行刻蚀的技术如图8.11所示,RIE腔室的上电极接地,下电极连接射频电 源(13.56MHz),待刻蚀基板放置于下电极,当给平面电极加上高频电压后,反应物发生电 离产生等离子体,等离子体在射频电场作用下,带负电的电子因质量较小首先到达基板表面, 又因为下基板直接连接隔直流电容器,所以不能形成电流从下基板流走,这样就会在基板附 近形成带负电的鞘层电压(DC偏压),这种现象被称为阴极降下。

正离子在偏压作用下, 沿着电场方向垂直轰击基板表面,离子轰击大大加快了表面的化学反应及反应生成物的脱附,因而RIE模式有很高的刻蚀速率,并且可以获得较好的各向异性侧壁图形,但相对的 表面损伤也较严重气体放电RF射频电源(13. 或电于的移动被隔 直流电容器阻断网极隔直流电容器已b H H声点 今::< 壬•困 :::甲尊壬3W适碎 \_■ ■■■■I ■ 1 1 ■ 1 I:::;::::::: m:<: 二:•存:SH:〉:令:aS.99'玻璃/;■基板电子电流流向大定气体 JLT图8.11反应离子刻蚀原理2.等离子刻蚀等离子刻蚀简称PE(Plasma Etching)模式,PE与RIE模式的差别在于将RF射频电源连接于上电极,而下电极接地,RF装于上电极,可通过控制RF Power来控制反应气体解离浓度,且下电极接地使得表面电位为零,与电浆电位(略大于零)相差不多,并不能产生离 子轰击效应,所以造成表面损伤低,适合运用与电性能高度相关的膜层之刻蚀,图8.6射烦电源(13. 56NHZ)隔宜流电容器/阴极玻璃/■基板阳根排气图8.6 PE模式原理3.电感耦合等离子体(ICP)除了 PE及RIE机台,array制程最常用到的还有ICP (Inductively Coupled Plasma )模 式。

ICP的上电极是一个螺旋感应线圈,连接功率为1。

下载提示
相似文档
正为您匹配相似的精品文档