磁芯市场分析

上传人:枫** 文档编号:487855062 上传时间:2023-05-03 格式:DOCX 页数:16 大小:25.09KB
返回 下载 相关 举报
磁芯市场分析_第1页
第1页 / 共16页
磁芯市场分析_第2页
第2页 / 共16页
磁芯市场分析_第3页
第3页 / 共16页
磁芯市场分析_第4页
第4页 / 共16页
磁芯市场分析_第5页
第5页 / 共16页
点击查看更多>>
资源描述

《磁芯市场分析》由会员分享,可在线阅读,更多相关《磁芯市场分析(16页珍藏版)》请在金锄头文库上搜索。

1、磁芯市场分析一、 软磁铁氧体行业发展前景与其他软磁材料相比,软磁铁氧体在材料中高频损耗和技术成熟度具备一定竞争优势,终端应用场景广泛,其用途的基础性和普遍性使其需求增长呈现出较为稳定的特征;同时,近年来伴随新能源汽车、光伏发电、5G通讯等行业迅速发展,下游电子化场景的增加带动电子磁性元件需求量的增加,对于磁性材料的性能要求也更高,新兴应用场景将成为软磁铁氧体未来重要的需求增长点,高性能、高可靠度、高环境适应性的软磁铁氧体将迎来更广阔的增长空间。二、 两大材料路线不断迭代,金属软磁粉芯综合性能突出金属软磁粉芯和非晶纳米晶是当前并存的两大高端软磁材料发展路线。金属软磁粉芯不仅改善了传统金属软磁磁导

2、率不高的缺陷,并且达到了远超铁氧体软磁的饱和磁感应强度,综合性能优良。而非晶纳米晶除去成本劣势,综合性能更为优异,并具有制造节能、应用节能、回收节能的特点,是全生命周期绿色可循环材料。金属软磁粉芯是由绝缘介质包覆的磁粉压制而成的软磁材料,是当今软磁材料领域综合性能最佳的软磁材料。软磁粉芯的磁性能,结合了金属软磁材料和软磁铁氧体的优势,由于其粉末采用的是铁磁性颗粒,饱和磁感应强度高,同时因为有绝缘层的存在,其电阻率也较高。成型工艺方面,其相较非晶软磁成熟,可塑性强。软磁粉芯可以同时满足高频(KHzMHz)使用和体积小型化的需求,并且可以加工成环形、E型、U型等,以满足不同的应用场合。金属软磁粉芯

3、可分为铁粉芯、羰基铁粉芯、铁硅铝磁粉芯、铁硅磁粉芯、高磁通磁粉芯、铁镍钼磁粉芯。在合金金属软磁粉芯材料中,金属铁镍类粉芯材料性能优异,但由于价格昂贵难以大规模地被采用。铁基非晶类粉芯材料,虽具有良好的磁芯损耗与饱和特性,但在技术上仍然存在可靠性、磁芯成型的压制性等结构性问题短时间难以彻底解决,大批量生产与使用仍然难以实现,在中高频工作条件下,铁硅类金属磁粉芯软磁材料是能够满足要求的理想材料之一。铁粉芯:以纯铁粉为原料,经表面绝缘包覆后采用有机粘合剂混合压制而成。被广泛应用于储能电感器、调光抗流器、EMI噪音滤波器、DC输出/输入滤波器等。羰基铁粉芯:由超细纯铁粉制成,具有优异的偏磁特性合良好的

4、高频适应性。其直流偏置特性远优于其他磁粉芯,是制造高频开关电路输出扼流圈、谐振电感及高频调谐磁芯芯体较为理想的材料。铁硅铝磁粉芯:由85%Fe、9%Si、6%Al的合金粉末生产出来的一种软磁复合材料,适用于功率因数校正电路(PFC电感器)、脉冲回扫变压器合储能滤波电感器。铁硅磁粉芯:开发相对较晚,由94%Fe和6%Si的合金粉末制成,适用于大电流下的抗流器、高储能的功率电感器、PFC电感器等,在太阳能、风能、混合动力汽车等新能源领域中被广泛使用。高磁通磁粉芯:磁通密度最高的磁粉芯,具有优异的直流偏置特性、低损耗和高储能特性。高磁通磁粉芯非常适用于大功率、大直流偏置场合的应用,如调光电感器,回扫

5、变压器、在线噪音滤波器、脉冲变压器和功率回数校正电感器等。铁镍钼磁粉芯:由17Fe、81Ni和2Mo的合金粉末制成的一种粉芯材料,也称钼坡莫合金磁粉芯,具有高磁导率、高电阻率、低磁滞和低涡流损耗的特性。在磁粉芯领域中,铁镍钼磁粉芯的损耗是最低的,同时也具有最佳的温度稳定性。适合用于回扫变压器、高Q滤波器、升压降压电感器、功率因校正电感器(PFC电感器)、滤波器等。非晶纳米晶软磁材料兼具饱和磁感应强度高、磁导率高、损耗低、良好温度特性和温度稳定性等优点,是传统硅钢、铁氧体和坡莫合金的替代产品,被誉为二十一世纪新型绿色节能材料,广泛应用于信息通讯和电力电子行业,推动并实现了电子产品向节能、小型化、

6、高频化方向发展。非晶合金又称液态金属、金属玻璃,是一种新型软磁合金材料。主要包含铁、硅、硼等元素。其主要制品非晶合金薄带的制造工艺是采用急速冷却技术将合金熔液以每秒106的速度急速冷却,形成厚度约003mm的非晶合金薄带,物理状态表现为金属原子呈无序非晶体排列。得益于上述极端生产工艺形成的特殊原子结构,非晶合金具有低矫顽力、高磁导率、高电阻率、耐高温腐蚀和高韧性等优异特性。非晶合金因其高效电磁能量转换效率的材料特性在节能减排方面具有优势。目前,非晶合金材料主要应用于配电变压器领域。相比硅钢材料,非晶合金材料具有突出的节能环保特性,是制造节能、使用节能、回收节能的全生命周期可循环绿色材料。在应用

7、侧,非晶变压器空载损耗较硅钢变压器降幅可达到60%左右,实现使用节能;在回收侧,废旧的非晶铁心可通过中频炉重熔后制成非晶合金薄带,非晶铁心中的硅、硼元素基本可以实现回收再利用,实现回收节能。纳米晶主要指铁基纳米晶合金,是由铁、硅、硼和少量的铜、铌等元素经急速冷却工艺形成非晶态合金后,再经过高度控制的退火环节,形成具有纳米级微晶体和非晶混合组织结构的材料。纳米晶材料得益于其高饱和磁密、高磁导率、高居里温度的材料优点,相比较于铁氧体软磁材料,在追求小型化、轻量化、复杂温度的场景下,有着显著优势。其主要用于生产电感元件、电子变压器、互感器、传感器等产品,可以应用于新能源汽车、消费电子、新能源发电、家

8、电以及粒子加速器等领域。特别是近年来纳米晶合金材料在新兴产业领域无线充电模块和新能源汽车电机等应用的逐步推广,使其逐步打开了广阔的市场增长空间。软磁材料在光伏发电和储能领域主要应用于逆变器的生产。光伏逆变器和储能逆变器在很大程度上同源,两大产业相互促进,协同发展。光储逆变器,作为光伏发电系统的核心设备,其工作原理是将光伏太阳能板所产生的可变直流电压转换成为市电频率交流电压,反馈回商用输电系统,或是供离网的电网使用。当用电低谷期电量富余时,电网的电能通过逆变器充放电控制器,对蓄电池进行充电储能。未来,逆变器还可继续优化将不规则的交流电转化为正弦波交流电流,输出的电流更稳定、安全,适用范围广、便于

9、远距离传输,市场前景广阔。储逆变器主要分为集中型、组串型、集散型、微型等。软磁材料主要应用于集中型和组串型逆变器。集中型逆变器的软磁用材主要是硅钢片,通过串联并行组串产生的电流,将直流电逆变为交流电。由于占地面积大,通常建造在戈壁沙漠等地区,应用于大型商业屋顶、工业厂房等。由于需要输出较大电流,即需要电抗器拥有较高的抗饱和能力,因此选取铁损率低、质量大的硅钢片。目前已研发出用取向硅钢片替代无取向硅钢做驱动电机定子,提高效能;组串型逆变器的软磁用材主要是金属软磁粉芯,为每个光伏组串配备一个逆变器,以并联的方式并网,主要应用于小型商场屋顶、停车场、居民住宅等。由于组串型逆变器开关频率较高,因此选用

10、低功率损耗、低矫顽力的金属软磁粉芯。光伏电站项目迈入平价上网时代,资本投资出现爆发式增长。根据中国光伏行业协会及国际能源署数据,2021年全球和中国新增光伏机装机容量分别为175GW和55GW,同时光伏产业政策利好不断,据国家发改委、国家能源局印发十四五现代能源体系规划,要求加快推进大型风电光伏基地项目建设,预计2022年全球新增光伏装机容量为250GW,2025年有望达到518GW,2022-2025年CAGR为30%左右。分布式占比提升带动高性能软磁材料的需求快速增长。分布式光伏电站是一种新型的、具有广阔发展前景的发电和能源综合利用方式,集规模灵活可调、污染少、利用率高等优点。2022年3

11、月,住建部十四五建筑节能与绿色建筑发展规划提出:到2025年,全国新增建筑太阳能光伏装机容量50GW以上。2022年5月,欧盟发布太阳能战略,提出充分开发屋顶太阳能。在全球降碳和能源自主趋势下,分布式光伏或将迎来历史性机遇。2017年至2022年,我国分布式光伏装机容量由194GW扩大到511GW。分布式光伏电站的发展带动了组串式逆变器需求的提升,中国组串式逆变器的渗透率由2017年的38%提升至2022年的59%,利好金属软磁粉芯市场。目前,华为已推出325KW组串式逆变器,将对500KW集中式逆变器形成替代。未来,高效能低成本的组串式逆变器还将进一步扩大其市场份额,金属软磁粉芯材料需求将持

12、续旺盛。逆变器替换需求同样为金属软磁粉芯带来可观的增量市场。光伏组件的寿命一般为20-25年左右,在组件的寿命周期中,至少需要更换一次逆变器。假设10年更换一次逆变器,预计2025年全球光伏逆变器替换需求为51GW。预计2025年金属软磁粉芯在光伏逆变器领域需求量785万吨,复合增速31%。根据行业生产数据,目前光伏领域软磁用量为200吨/GW,考虑到材料升级可能使光伏领域单耗降低,保守预计2025年光伏领域单位软磁用量为180吨/GW。按照2025年全球55%的分布式光伏电站占比进行测算,2025年光伏逆变器金属软磁粉芯用量785万吨,三年复合增速31%。储能技术发展为目前新能源发电领域最重

13、要的环节之一。源网荷储是新型电力系统中不可或缺的四类要素。储能技术有着巨大的价值。新能源并入电网后,储能在功率上能够实现实时平衡、提升系统容量系数与能源消纳能力,削峰填谷,从而为能源安全提供保障,是新型电力系统、现代化能源体系的重要组成部分。在目前用电成本高、电网协调能力弱、供电可靠性不足的情况下,储能技术的发展尤为重要。储能市场政策足够好、赛道足够宽。2022年以来,政策层面对储能行业给予了极大关注,一系列利好政策持续出台:1月,十四五新型储能发展实施方案设定了新型储能的发展目标;6月,仅地方性储能政策就发布了48条,涉及储能补贴、储能装机规划、储能设施建设等方面。在政策利好之下,储能行业发

14、展增势迅猛,新能源+储能项目快速在全国范围内铺开。2023年或将成为大储之年,软磁材料储能市场需求爆发在即。根据行业生产数据,储能所需的金属软磁粉芯单耗为200吨/GW。预计2023年全球储能新增装机量50GW,同比增长120%,2025年或将达到146GW,据此测算,全球储能领域软磁需求量达292万吨,2022-2025年CAGR约为85%。软磁材料主要应用于新能源汽车板块的充电桩、车载AC/DC充电器、车载DC/DC变换器三个应用领域。AC/DC充电器能将输入的交流电以直流电的方式输出,是为动力电池充电的装置;DC/DC变换器能将高压小电流转化为低压大电流,用于为车上其他电子器件供电。此外

15、,软磁材料还应用于汽车其他部件如无钥匙系统、音响喇叭、倒车影像等。充电桩领域软磁材料最广泛的应用是软磁粉芯制成的高频PFC电感,起储能、滤波作用,铁硅磁粉材料磁感应强度大,所占体积小,耐用性强,叠加分段气隙磁芯技术,可以有效规避传统变换器工作时磁通密度振幅过大、高损耗高温等缺陷,减少气隙损耗,提高转换效率、使用寿命、安全性和可靠性。软磁材料或将为新能源车实现无线动态充电模式。随着无线充电机在新能源车中应用更为广泛、所需功率加大,未来这将成为合金软磁的又一增量市场。与传统充电相比,无线充电具有安全性、灵活性,尤其是在动态充电模式,能够对行驶过程中的电动汽车进行实时充电,更能满足消费者对电动汽车续

16、航的要求。高电压趋势是金属软磁粉芯需求的新看点。金属软磁粉芯主要用于EV车型的OBC电感,单车用量07kg,以及PHEV车型的升压电感和OBC电感,单车用量33kg。根据目前纯电动车和混合动力汽车的销售占比,平均每辆新能源车的金属软磁粉芯用量约122kg,对应2022年全球新能源汽车对金属软磁粉芯的需求为132万吨。为了应对EV车型续航短、充电慢等问题,行业内提出了将电压升高,由400V升至800V的解决方案,实现这一解决方案需要在DC/DC变换器上再安装一个升压电感,这将使EV车型的单车用量由原先的07kg提升至27kg左右,提升率约为300%。按照2025年平均每辆新能源车单耗282kg进行测算,则全球新能源车软磁需求量将达到660万吨,2022-2025年CAGR为710%。新能源车保有量增加带来充电桩需求提升,欧美市场充电桩放量可期。根据中国充电联盟统计,2017年我国公共+私人充电桩总数约45万个,2022年达521万个,2017-

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 解决方案

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号