塑料管道生产相关技术

上传人:壹****1 文档编号:487808861 上传时间:2022-09-21 格式:DOCX 页数:14 大小:30.78KB
返回 下载 相关 举报
塑料管道生产相关技术_第1页
第1页 / 共14页
塑料管道生产相关技术_第2页
第2页 / 共14页
塑料管道生产相关技术_第3页
第3页 / 共14页
塑料管道生产相关技术_第4页
第4页 / 共14页
塑料管道生产相关技术_第5页
第5页 / 共14页
点击查看更多>>
资源描述

《塑料管道生产相关技术》由会员分享,可在线阅读,更多相关《塑料管道生产相关技术(14页珍藏版)》请在金锄头文库上搜索。

1、塑料管道生产相关技术-四大文章汇总1、塑料管道挤出成型工艺参数挤出成型工艺参数包括温度、压力、挤出速率和牵引速度等。1.温度温度是挤出成型得以顺利进行的重要条件之一。从粉状或粒状的固态物料开始,高温制品从机头中挤出,经历了一个复杂的温度变化过程。严格来讲,挤出成型温度应指塑料熔体的温度,但该温度却在很大程度上取决于料筒和螺杆的温度,一小部分来自在料筒中混合时产生的摩擦热,所以经常用料筒温度近似表示成型温度。由于料筒和塑料温度在螺杆各段是有差异的,为了使塑料在料筒中输送、熔融、均化和挤出的过程顺利进行,以便高效率地生产高质量制件,关键问题是控制好料筒各段温度,料筒温度的调节是靠挤出机的加热冷却系

2、统和温度控制系统来实现的。机头温度必须控制在塑料热分解温度以下,而口模处的温度可比机头温度稍低一些,但应保证塑料熔体具有良好的流动性。此外,成型过程中温度的波动和温差,将使塑件产生残余应力、各点强度不均匀和表面灰暗无光泽等缺陷。产生这种波动和温差的因素很多,如加热、冷却系统不稳定,螺杆转速变化等,但以螺杆设计和选用的好坏影响最大。表1几种热塑性塑料挤出成型管材的温度参数2.压力在挤出过程中,由于料流的阻力,螺杆槽深度的变化,以及过滤网、过滤板和口模等产生阻碍,因而沿料筒轴线方向,在塑料内部产生一定的压力。这种压力是塑料变为均匀熔体并得到致密塑件的重要条件之一。增加机头压力可以提高挤出熔体的混合

3、均匀性和稳定性,提高产品致密度,但机头压力过大将影响产量。和温度一样,压力随时间的变化也会产生周期性波动,这种波动对塑件质量同样有不利影响,螺杆转速的变化,加热、冷却系统的不稳定都是产生压力波动的原因。为了减少压力波动,应合理控制螺杆转速,保证加热和冷却装置的温度控制精度。3.挤出速率挤出速率(亦称挤出速度)是单位时间内挤出机口模挤出的塑料质量(单位为kg/h)或长度(单位为m/min)。挤出速度的大小表征着挤出生产能力的高低。影响挤出速度的因素很多,如机头、螺杆和料筒的结构、螺杆转速、加热冷却系统结构和塑料的特性等。理论和实践都证明,挤出速率随螺杆直径、螺旋槽深度、均化段长度和螺杆转速的增大

4、而增大,随螺杆末端熔体压力和螺杆与料筒间隙增大而增大。在挤出机的结构和塑料品种及塑件类型已确定的情况下,挤出速率仅与螺杆转速有关,因此,调整螺杆转速是控制挤出速率的主要措施。挤出速率在生产过程中也存在波动现象,这将影响塑件的几何形状和尺寸精度。因此,除了正确确定螺杆结构和尺寸参数之外,还应严格控制螺杆转速,严格控制挤出温度,防止因温度改变而引起挤出压力和熔体粘度变化,从而导致挤出速度的波动。4.牵引速度挤出成型主要生产连续的塑件,因此必须设置牵引装置。从机头和口模中挤出的塑件,在牵引力作用下将会发生拉伸取向。拉伸取向程度越高,塑件沿取向方向的拉伸强度也越大,但冷却后长度收缩也大。通常,牵引速度

5、可与挤出速度相当。牵引速度与挤出速度的比值称牵引比,其值必须大于1。表2几种塑料管材的挤出成型工艺参数2、塑料管材生产线常见故障及解决办法塑料管材在生产线过程中,由于操作人员对工艺和机器操作不够熟练等各种原因,常会致使塑料管材出现外表面粗糙,内部出现抖动环,壁厚不均,圆度不够等现象,所以要及时调整工艺,排除塑料管材生产线故障,才能提高产品质量。1 塑料管材外表面粗糙调整工艺温度;降低冷却水温,PE管最佳冷却水温为2025C;检查水路,是否存在堵塞或水压不足现象;检查机筒、机头等加热圈是否有损坏;调整定径套进水流量;检查原料的性能和批号;检查模具芯部温度,若高于口模区段温度,调低芯部温度;清理模

6、具的集料;2 塑料管材外表面出现沟痕调整定径套出水压力,出水量要求均衡;调整真空定型箱内喷嘴角度,使管材冷却均匀;检查口模、定径套、切割机等硬件是否存在杂物、毛刺等;3 内表面出现沟痕检查内管是否进水,如进水则将刚出口模的管胚捏牢,使其内腔封闭;降低模具内部温度;清理并抛光模具;4 管道内部出现抖动环调整定径套出水,使其出水均匀;调整二室真空度,使后室真空度略高于前室真空度;检查真空密封垫是否过紧;检查牵引机有否存在抖动现象;检查主机出料是否均匀;5 无真空检查真空泵进水口是否堵塞,如堵塞,进行疏通;检查真空泵工作是否正常;检查真空管路是否漏气;检查芯模压紧螺钉中间的小孔是否堵塞,如堵塞,用细

7、铁丝疏通;6 管材外圆尺寸超差调整真空度大小可改变外园尺寸;调整牵引速度可改变外园尺寸;修正定径套内孔尺寸;7 管材圆度超差调整真空定型机、喷淋箱内喷嘴角度,使管材冷却均匀;检查真空定型机、喷淋箱内水位高度、水压表压力,使喷淋量大而有力;检查真空定型机、喷淋箱水温状况,若35C,需配置冷冻水系统或增加喷淋冷却箱;检查水路,清洗过滤器;调整工艺;检查并修正定径套内孔园度;调整管材导向夹持装置,以修正管材的椭圆度;8 管材壁厚不均匀在模具上调整壁厚;调整真空定型机及喷淋箱内喷嘴角度,使管材冷却均匀;调整定径套出水,使其出水均匀;拆开模具,检查模具内部螺钉是否松动,并重新拧紧;9 塑化温度过高调整工

8、艺;调整模具芯部加热温度,并对模具内部通风冷却;螺杆的剪切热太高,更换螺杆;10 切割计长不准确检查计长轮是否压紧;检查计长轮是否摆动,并拧紧计长轮架固定螺栓;检查切割机行程开关有否损坏;检查旋转编码器是否损坏;旋转编码器接线有否脱焊(航空插头座接触是否良好);各单机外壳(PE端子)应各自引接地线到1个总接地点可靠接地,且该接地点应有符合电气接地要求接地桩,不允许各单机外壳(PE端子)串联后接地,否则将引入干扰脉冲,引起切割长度不准;11 共挤标识条问题共挤标识条扩散:一般是由于用户使用的共挤料选择不当造成,应使用PE等专用料,必要时可降低挤出段温度;3、PVC管材的生产工艺条件控制工艺条件及

9、控制在生产过程中,由于PVC是热敏性材料,即使加入热稳定剂也只能是提高分解温度,延长稳定时间而不可能不出现分解,这就要求PVC的成型加工温度应严格控制。特别是RPVC,因其加工温度与分解温度很接近,往往因为温度控制不当造成分解现象。因此,挤出温度应根据配方、挤生机特性、机头结构、螺杆转速、测温点位置、测温仪器的误差及测温点深度等因素确定。1、温度的控制温度的控制是挤出操作中重要的控制因素。挤出成型所需的控制因素的温度是机筒温度、机径温度、口模温度。温度过低,塑化不良,管材外观无光泽,力学性能差,产品质量达不到要求:温度过高,物料会发生分解,产品变色等现象出现。2、螺杆转速螺杆转速提高,挤出量增

10、加,从而可提高产量,但容易产生塑化不良的现象,造成管材内壁毛糙,强度下降,这时应调节机头压力,使产量、质量到达最佳。螺杆的温度控制影响到物料输送率、物料的塑化、熔融质量等。挤出管材需要通冷却水,降低螺杆温度,有利于提高塑化质量,螺杆通冷却水温度在5070左右。3、牵引速度再挤出操作中牵引速度的调节很重要,物料经挤出熔融塑化,从机头连续挤出后被牵引,从而进入定型装置、冷却装置、牵引装置等,牵引速度应与挤出速度相匹配。一般在正常生产时,牵引速度应比管材的挤出速度快1%10%左右。4、压缩空气和压力压缩空气能够将管材管材吹胀,使管材保持一定的圆度。要求压力应大小适当。压力过小,管材不圆,压力过大,芯

11、模被冷却,管材内壁出现裂口,不光滑,管材质量下降。同时压力要求稳定,如压力忽大忽小,管材容易产生竹节现状。5、定径装置、冷却装置的温度挤出不同的塑料产品,采用不同的定径方式和冷却方式,冷却的介质可以是空气、水或其他类液体,需要控制温度,其温度主要与生产效率、产品内应力等有关。4、PVC-U塑料管材发脆的原因分析外界因素一直以来塑料发脆是困扰一些企业正常运营的因素,管材发脆无论从截面外观上还是安装认同程度上都或多或少的影响着这些管材企业的市场份额和用户信誉,管材发脆基本上在制品的物理、力学性能上得到充分体现。其主要性征为:下料时崩口、冷冲破裂。造成管材制品物理、力学性能差的原因有很多,主要表现为

12、以下几种:1、配方及混料工艺不合理(1)填料过多。针对目前市场上型材价格低,而原材料价格上涨的格局,管材厂家都是在降低成本上作文章,正规的管材厂家通过配方的优化组合,是在不降低质量的前提下,降低了成本;有些厂家却在降低成本的同时也降低了制品质量。由于配方组份的原因,最直接有效的办法是增加填料,在PVC-U塑料管材中常用的填料为碳酸钙。在以前的配方体系中多数是填加重钙,其目的是增加刚性和降低成本,但重钙由于本身粒子形状不规则而且粒径比较粗与PVC树脂本体的相溶性差,所以其添加份数很低,而且份数增大时会对管材的色泽和表观造成影响。现在随着技术的发展,大多采用超细轻质活化碳酸钙、甚至是纳米级碳酸钙、

13、其不仅起到增加刚性和填充的作用,而且还具有改性的作用,但是其填加量并不是无限度的,其比例应该加以控制。现在有些厂家为了降低成本将碳酸钙加到20-50质量份,这大大降低了型材的物理力学性能,造成管材发脆现象。(2)抗冲击改性剂添加种类、数量。抗冲击改性剂是在应力作用下,能够提高聚氯乙烯破裂总能量的一种高分子聚合物。目前硬质聚氯乙烯的抗冲击改性剂的主要品种有CPE、ACR、MBS、ABS、EVA等,其中CPE、EVA、ACR改性剂的分子结构中不含双键,耐候性能好,适宜做户外建筑材料,它们与PVC共混,能有效的提高硬聚氯乙烯的抗冲击性能、加工性、耐候性。在PVC/CPE共混体系中,其冲击强度随CPE

14、的用量增加而增加,呈S形曲线。添加量在8质量份以下时,体系的冲击强度增长幅度非常小;添加量在8-15质量份时增加幅度最大;之后增长幅度又趋于平缓。当CPE用量在8质量份以下时不足以形成网状结构;当CPE用量在8-15质量份时,其在共混体系中连续均匀分散,形成分相不分离的网状结构,使共混体系的冲击强度增长幅度最大;当CPE用量超过15质量份时,就不能形成连续均匀的分散,而是有部分CPE形成凝胶状,这样在两相界面上就不会有适宜分散的CPE颗粒来吸收冲击能量,因而冲击强度增长趋于缓慢。而在PVC/ACR共混体系中,ACR可显著提高共混体系的抗冲击性能。同时“核一壳”粒子可均匀分散在PVC基体中,PV

15、C是连续相,ACR是分散相,分散在PVC连续相中与PVC相互作用,起到加工助剂的作用,促进PVC的塑化和凝胶化,塑化时间短,具有很好的加工性能。成形温度和塑化时间对缺口冲击强度影响较小,弯曲弹性模量下降也小。一般用量在5-7质量份,经ACR改性的硬PVC制品有优良的室温冲击强度或低温冲击强度。而经实验论证,ACR与CPE相比抗冲击强度要高30%左右。因此在配方中尽可能采用PVC/ACR共混体系,而用CPE改性且用量低于8质量份时往往会引起管材发脆。(3)稳定剂过多或过少。稳定剂的作用是抑制降解,或与释放出的氯化氢反应以及防止聚氯乙烯加工时变色。稳定剂根据种类不同用量也不同,但总的一点来说,用量过多会推迟物料的塑化时间从而使物料出口模时还欠塑化,其配方体系中各分子之间没有完全溶合,造成其分子间结构不牢固。而用量过少时会造成配方体系中相对低分子物降解或分解(也可以说成过塑化),对各组份分子间结构的稳固性造成破坏。因此稳定剂用量多少也会

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 商业/管理/HR > 市场营销

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号