二次函数知识点总结和相关典型题目含答案解析

上传人:大米 文档编号:487550481 上传时间:2022-11-18 格式:DOC 页数:14 大小:893KB
返回 下载 相关 举报
二次函数知识点总结和相关典型题目含答案解析_第1页
第1页 / 共14页
二次函数知识点总结和相关典型题目含答案解析_第2页
第2页 / 共14页
二次函数知识点总结和相关典型题目含答案解析_第3页
第3页 / 共14页
二次函数知识点总结和相关典型题目含答案解析_第4页
第4页 / 共14页
二次函数知识点总结和相关典型题目含答案解析_第5页
第5页 / 共14页
点击查看更多>>
资源描述

《二次函数知识点总结和相关典型题目含答案解析》由会员分享,可在线阅读,更多相关《二次函数知识点总结和相关典型题目含答案解析(14页珍藏版)》请在金锄头文库上搜索。

1、.二次函数知识点总结及相关典型题目第一部分 基础知识1.定义:一般地,如果是常数,那么叫做的二次函数.2.二次函数的性质1抛物线的顶点是坐标原点,对称轴是轴.2函数的图像与的符号关系.当时抛物线开口向上顶点为其最低点;当时抛物线开口向下顶点为其最高点.3顶点是坐标原点,对称轴是轴的抛物线的解析式形式为.3.二次函数的图像是对称轴平行于包括重合轴的抛物线.4.二次函数用配方法可化成:的形式,其中.5.二次函数由特殊到一般,可分为以下几种形式:;.6.抛物线的三要素:开口方向、对称轴、顶点.的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同.平行于轴或重合

2、的直线记作.特别地,轴记作直线.7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.8.求抛物线的顶点、对称轴的方法 1公式法:,顶点是,对称轴是直线. 2配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为,对称轴是直线. 3运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点. 用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.9.抛物线中,的作用 1决定开口方向及开口大小,这与中的完全一样. 2和共同决定抛物线对

3、称轴的位置.由于抛物线的对称轴是直线,故:时,对称轴为轴;即、同号时,对称轴在轴左侧;即、异号时,对称轴在轴右侧. 3的大小决定抛物线与轴交点的位置. 当时,抛物线与轴有且只有一个交点0,:,抛物线经过原点; ,与轴交于正半轴;,与轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则 .10.几种特殊的二次函数的图像特征如下:函数解析式开口方向对称轴顶点坐标当时开口向上当时开口向下轴0,0轴11.用待定系数法求二次函数的解析式 1一般式:.已知图像上三点或三对、的值,通常选择一般式. 2顶点式:.已知图像的顶点或对称轴,通常选择顶点式. 3交点式:已知图像与轴的

4、交点坐标、,通常选用交点式:.12.直线与抛物线的交点 1轴与抛物线得交点为. 2与轴平行的直线与抛物线有且只有一个交点. 3抛物线与轴的交点 二次函数的图像与轴的两个交点的横坐标、,是对应一元二次方程的两个实数根.抛物线与轴的交点情况可以由对应的一元二次方程的根的判别式判定:有两个交点抛物线与轴相交;有一个交点顶点在轴上抛物线与轴相切;没有交点抛物线与轴相离. 4平行于轴的直线与抛物线的交点 同3一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为,则横坐标是的两个实数根. 5一次函数的图像与二次函数的图像的交点,由方程组 的解的数目来确定:方程组有两组不同

5、的解时与有两个交点; 方程组只有一组解时与只有一个交点;方程组无解时与没有交点. 6抛物线与轴两交点之间的距离:若抛物线与轴两交点为,由于、是方程的两个根,故第二部分 典型习题.抛物线yx22x2的顶点坐标是 D A.2,2 B.1,2 C.1,3 D.1,3.已知二次函数的图象如图所示,则下列结论正确的是 Cab0,c0ab0,c0ab0,c0ab0,c0第,题图 第4题图.二次函数的图象如图所示,则下列结论正确的是Aa0,b0,c0 Ba0,b0,c0Ca0,b0,c0 Da0,b0,c0.如图,已知中,BC=8,BC上的高,D为BC上一点,交AB于点E,交AC于点FEF不过A、B,设E到

6、BC的距离为,则的面积关于的函数的图象大致为 .抛物线与x轴分别交于A、B两点,则AB的长为 4 6.已知二次函数与x轴交点的横坐标为、,则对于下列结论:当x2时,y1;当时,y0;方程有两个不相等的实数根、;,;,其中所有正确的结论是只需填写序号7.已知直线与x轴交于点A,与y轴交于点B;一抛物线的解析式为.1若该抛物线过点B,且它的顶点P在直线上,试确定这条抛物线的解析式;2过点B作直线BCAB交x轴交于点C,若抛物线的对称轴恰好过C点,试确定直线的解析式.解:1或 将代入,得.顶点坐标为,由题意得,解得.28.有一个运算装置,当输入值为x时,其输出值为,且是x的二次函数,已知输入值为,0

7、,时, 相应的输出值分别为5,1求此二次函数的解析式;2在所给的坐标系中画出这个二次函数的图象,并根据图象写出当输出值为正数时输入值的取值范围.解:1设所求二次函数的解析式为,yOx则,即,解得故所求的解析式为:.2函数图象如图所示.由图象可得,当输出值为正数时,输入值的取值范围是或第9题9.某生物兴趣小组在四天的实验研究中发现:骆驼的体温会随外部环境温度的变化而变化,而且在这四天中每昼夜的体温变化情况相同他们将一头骆驼前两昼夜的体温变化情况绘制成下图请根据图象回答:第一天中,在什么时间范围内这头骆驼的体温是上升的?它的体温从最低上升到最高需要多少时间? 第三天12时这头骆驼的体温是多少?兴趣

8、小组又在研究中发现,图中10时到 22时的曲线是抛物线,求该抛物线的解 析式解:第一天中,从4时到16时这头骆驼的体温是上升的 它的体温从最低上升到最高需要12小时第三天12时这头骆驼的体温是3910.已知抛物线与x轴交于A、B两点,与y轴交于点C是否存在实数a,使得ABC为直角三角形若存在,请求出a的值;若不存在,请说明理由解:依题意,得点C的坐标为0,4 设点A、B的坐标分别为,0,0, 由,解得,点A、B的坐标分别为-3,0,0,当时,ACB90 由, 得 解得当时,点B的坐标为,0, 于是当时,ABC为直角三角形当时,ABC90由,得解得当时,点B-3,0与点A重合,不合题意当时,BA

9、C90由,得解得不合题意综合、,当时,ABC为直角三角形11.已知抛物线yx2mxm2. 1若抛物线与x轴的两个交点A、B分别在原点的两侧,并且AB,试求m的值;2设C为抛物线与y轴的交点,若抛物线上存在关于原点对称的两点M、N,并且 MNC的面积等于27,试求m的值.解: x1,0,B . 则x1,x2是方程x2mxm20的两根.x1 x2m , x1x2=m2 0 即m2 ;又ABx1x2 , m24m3=0 . NMCxyO解得:m=1或m=3 , m的值为1 . 2M,则N .M、N是抛物线上的两点,得:2a22m40 . a2m2 .当m2时,才存在满足条件中的两点M、N. .这时M

10、、N到y轴的距离均为, 又点C坐标为0,2m,而SM N C = 27 ,22m=27 .解得m=7 . 12.已知:抛物线与x轴的一个交点为A1,01求抛物线与x轴的另一个交点B的坐标;2D是抛物线与y轴的交点,C是抛物线上的一点,且以AB为一底的梯形ABCD的面积为9,求此抛物线的解析式;3E是第二象限内到x轴、y轴的距离的比为52的点,如果点E在2中的抛物线上,且它与点A在此抛物线对称轴的同侧,问:在抛物线的对称轴上是否存在点P,使APE的周长最小?若存在,求出点P的坐标;若不存在,请说明理由解法一:1依题意,抛物线的对称轴为x2 抛物线与x轴的一个交点为A1,0, 由抛物线的对称性,可

11、得抛物线与x轴的另一个交点B的坐标为3,02 抛物线与x轴的一个交点为A1, 0,t3aD0,3a 梯形ABCD中,ABCD,且点C在抛物线 上,C4,3aAB2,CD4 梯形ABCD的面积为9,a1 所求抛物线的解析式为或3设点E坐标为,.依题意, 且设点E在抛物线上,解方程组 得 点E与点A在对称轴x2的同侧, 点E坐标为,设在抛物线的对称轴x2上存在一点P,使APE的周长最小AE长为定值, 要使APE的周长最小,只须PAPE最小 点A关于对称轴x2的对称点是B3,0, 由几何知识可知,P是直线BE与对称轴x2的交点设过点E、B的直线的解析式为, 解得 直线BE的解析式为 把x2代入上式,

12、得 点P坐标为2,设点E在抛物线上,解方程组 消去,得0 . 此方程无实数根综上,在抛物线的对称轴上存在点P2,使APE的周长最小解法二:1 抛物线与x轴的一个交点为A1,0,t3a令 y0,即解得 , 抛物线与x轴的另一个交点B的坐标为3,02由,得D0,3a 梯形ABCD中,ABCD,且点C在抛物线上, C4,3aAB2,CD4 梯形ABCD的面积为9,解得OD3a1 所求抛物线的解析式为或3同解法一得,P是直线BE与对称轴x2的交点 如图,过点E作EQx轴于点Q设对称轴与x轴的交点为F由PFEQ,可得 点P坐标为2,以下同解法一13.已知二次函数的图象如图所示1求二次函数的解析式及抛物线顶点M的坐标2若点N为线段BM上的一点,过点N作x轴的垂线,垂足为点Q当点N在线段BM上运动时点N不与点B,点M重合,设NQ的长为l,四边形NQAC的面积为S,求S与t之间的函数关系式及自变量t的取值范围; 3在对称轴右侧的抛物线上是否存在点P,使PAC为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由;4将OAC补成矩形,使OAC的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 资格认证/考试 > 自考

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号