双曲线椭圆练习题

上传人:公**** 文档编号:487316596 上传时间:2023-12-19 格式:DOC 页数:20 大小:857.50KB
返回 下载 相关 举报
双曲线椭圆练习题_第1页
第1页 / 共20页
双曲线椭圆练习题_第2页
第2页 / 共20页
双曲线椭圆练习题_第3页
第3页 / 共20页
双曲线椭圆练习题_第4页
第4页 / 共20页
双曲线椭圆练习题_第5页
第5页 / 共20页
点击查看更多>>
资源描述

《双曲线椭圆练习题》由会员分享,可在线阅读,更多相关《双曲线椭圆练习题(20页珍藏版)》请在金锄头文库上搜索。

1、四基本方法和数学思想1.椭圆焦半径公式:设P(x0,y0)为椭圆(ab0)上任一点,焦点为F1(-c,0),F2(c,0),则(e为离心率);2.双曲线焦半径公式:设P(x0,y0)为双曲线(a0,b0)上任一点,焦点为F1(-c,0),F2(c,0),则:(1)当P点在右支上时,;(2)当P点在左支上时,;(e为离心率);另:双曲线(a0,b0)的渐进线方程为;3.抛物线焦半径公式:设P(x0,y0)为抛物线y2=2px(p0)上任意一点,F为焦点,则;y2=2px(p0)上任意一点,F为焦点,;4.涉及圆锥曲线的问题勿忘用定义解题;5.共渐进线的双曲线标准方程为为参数,0);6.计算焦点弦

2、长可利用上面的焦半径公式,一般地,若斜率为k的直线被圆锥曲线所截得的弦为AB, A、B两点分别为A(x1,y1)、B(x2,y2),则弦长 ,这里体现了解析几何“设而不求”的解题思想;7.椭圆、双曲线的通径(最短弦)为,焦准距为p=,抛物线的通径为2p,焦准距为p; 双曲线(a0,b0)的焦点到渐进线的距离为b;8.中心在原点,坐标轴为对称轴的椭圆,双曲线方程可设为Ax2+Bx21;9.抛物线y2=2px(p0)的焦点弦(过焦点的弦)为AB,A(x1,y1)、B(x2,y2),则有如下结论:(1)x1+x2+p;(2)y1y2=p2,x1x2=;10.过椭圆(ab0)左焦点的焦点弦为AB,则,

3、过右焦点的弦;11.对于y2=2px(p0)抛物线上的点的坐标可设为(,y0),以简化计算;12.处理椭圆、双曲线、抛物线的弦中点问题常用代点相减法,设A(x1,y1)、B(x2,y2)为椭圆(ab0)上不同的两点,M(x0,y0)是AB的中点,则KABKOM=;对于双曲线(a0,b0),类似可得:KAB.KOM=;对于y2=2px(p0)抛物线有KAB13.求轨迹的常用方法:(1)直接法:直接通过建立x、y之间的关系,构成F(x,y)0,是求轨迹的最基本的方法;(2)待定系数法:所求曲线是所学过的曲线:如直线,圆锥曲线等,可先根据条件列出所求曲线的方程,再由条件确定其待定系数,代回所列的方程

4、即可;(3)代入法(相关点法或转移法):若动点P(x,y)依赖于另一动点Q(x1,y1)的变化而变化,并且Q(x1,y1)又在某已知曲线上,则可先用x、y的代数式表示x1、y1,再将x1、y1带入已知曲线得要求的轨迹方程;(4)定义法:如果能够确定动点的轨迹满足某已知曲线的定义,则可由曲线的定义直接写出方程;(5)参数法:当动点P(x,y)坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将x、y均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程。例题1求过点(2,1)且与两坐标所围成的三角形面积为4的直线方程。错解:设所求直线方程为。(2,1)在直线上, 又,即ab = 8

5、, 由、得a = 4,b = 2。故所求直线方程为x + 2 y = 4 。剖析:本题的“陷阱”是直线与两坐标轴所围成的三角形面积的表示。上述解法中,由于对截距概念模糊不清,误将直线在x轴和y轴上的截距作距离使用而掉入“陷阱”。事实上,直线与两坐标轴所围成的三角形面积为,而不是ab。故所求直线方程应为:x + 2 y = 4,或(+1)x - 2(-1)y 4 = 0,或(- 1)x - 2(+1)y +4 = 0。例题2已知三角形的三个顶点为A(6,3),B(9,3),C(3,6),求A。错解: kAB = 0 ,k AC = = -1, tanA=1.又0A1800, A=450。剖析:本

6、题的“陷阱”是公式的选取,上述解法中把“到角”与“夹角”的概念混为一谈,错误地选用了夹角公式。事实上,所求角应是直线AB到AC(注意:不是AC到AB)的角。因此, tanA= - 1,A=1350。例题3求过点A(-4,2)且与x轴的交点到(1,0)的距离是5的直线方程。错解:设直线斜率为k,其方程为y 2 = k(x + 4),则与x轴的交点为(-4-,0),解得k = -。故所求直线的方程为x + 5y 6 = 0 。剖析:题中仅考虑了斜率存在的情况,忽视了斜率不存在的情况,即经过A且垂直于x轴的直线,落入“陷阱”。其实x = - 4也符合题意。例题4求过点(1,1)且横、纵截距相等的直线

7、方程。错解:设所求方程为,将(1,1)代入得a = 2,从而得所求直线方程为x + y 2 = 0。剖析:上述错解所设方程为,其中不含横、纵截距为0的特殊情形,事实上,横、纵截距为0且过点(1,1)的直线y = x 也符合条件。例题5已知圆的方程为x2 + y2 + ax + 2y + a2 = 0 ,一定点为A(1,2),要使过A点作圆的切线有两条,求a的取值范围。错解:将圆的方程配方得: ( x + )2 + ( y + 1 )2 = 。其圆心坐标为C(,1),半径r 。当点A在圆外时,过点A可作圆的两条切线,则 r 。即 。即a2 + a + 9 0,解得aR。剖析:本题的“陷阱”是方程

8、x2 + y2 + ax + 2y + a 2= 0表示圆的充要条件,上述解法仅由条件得出 r ,即a2 + a + 9 0,却忽视了a的另一制约条件4 3 a2 0。事实上,由a2 + a + 9 0及4 3 a2 0可得a的取值范围是()。例题6已知直线L:y = x + b与曲线C:y =有两个公共点,求实线b的取值范围。错解:由消去x得:2y2 - 2by + b2 1 = 0。 ( * ) L与曲线C有两个公共点, = 4b2 8 ( b2 1 ) 0,解得b剖析:上述解法忽视了方程y =中y 0 , 1 x 1这一限制条件,得出了错误的结论。事实上,曲线C和直线L有两个公共点等价于

9、方程(*)有两个不等的非负实根。解得1 b 。例题7等腰三角形顶点是A(4,2),底边的一个端点是B(3,5),求另一个端点C的轨迹方程。错解:设另一个端点的坐标为( x ,y ),依题意有:=,即:= (x - 4)2 + (y - 2) 2 = 10即为C点的轨迹方程。这是以A(4,2)为圆心、以为半径的圆。剖析:因为A、B、C三点为三角形三个顶点,所以A、B、C三点不共线,即B、C不能重合,且不能为圆A一直径的两个端点,这正是解题后没有对轨迹进行检验,出现增解,造成的解题错误。事实上,C点的坐标须满足,且,故端点C的轨迹方程应为(x - 4)2 + ( y-2 )2 = 10 ( x3,

10、y5;x5,y1)。它表示以(4,2)为圆心,以为半径的圆,除去(3,5)(5,-1)两点。例题8求z = 3 x + 5 y的最大值和最小值,使式中的x ,y满足约束条件: 错解:作出可行域如图1所示,过原点作直线L0:3 x + 5 y = 0 。由于经过B点且与L0平行的直线与原点的距离最近,故z = 3 x + 5 y在B点取得最小值。解方程组,得B点坐标为(3,0), z最小3350=9。由于经过A点且与L0平行的直线与原点的距离最大,故z = 3x + 5y在A点取得最大值。 解方程组,得A点坐标为(,)。 z最大35= 17 。 剖析:上述解法中,受课本例题的影响,误认为在对过原

11、点的直线L0的平行移动中,与原点距离最大的直线所经过的可行域上的点,即为目标函数Z取得最大值的点。反之,即为Z取得最小值的点,并把这一认识移到不同情况中加以应用,由此造成了解题失误。事实上,过原点作直线L0:3x + 5y = 0,由于使z = 3x + 5y 0的区域为直线L0的右上方,而使z = 3x + 5y 0的区域为L0的左下方。由图知:z = 3x + 5y应在A点取得最大值,在C点取得最小值。解方程组,得C(2,1)。 z最小3(2)5(1)= 11。例题9已知正方形ABCD 对角线AC所在直线方程为 .抛物线过B,D两点 (1)若正方形中心M为(2,2)时,求点N(b,c)的轨

12、迹方程。(2)求证方程的两实根,满足解答:(1)设 因为 B,D在抛物线上 所以两式相减得 则代入(1) 得 故点的方程是一条射线。 (2)设 同上 (1)-(2)得 (1)+(2)得 (3)代入(4)消去得 得 又即的两根满足 故。易错原因:审题不清,忽略所求轨迹方程的范围。例题10已知双曲线两焦点,其中为的焦点,两点A (-3,2) B (1,2)都在双曲线上,(1)求点的坐标;(2)求点的轨迹方程,并画出轨迹的草图;(3)若直线与的轨迹方程有且只有一个公共点,求实数 t的取值范围。 解答:(1)由得:,故(2)设点,则又双曲线的定义得 又 或 点的轨迹是以为焦点的椭圆除去点或除去点 图略

13、。(3)联列:消去得 整理得: 当时 得 从图可知:, 又因为轨迹除去点 所以当直线过点时也只有一个交点,即或5 易错原因:(1)非标准方程求焦点坐标时计算易错;(2)求点的轨迹时易少一种情况;(3)对有且仅有一个交点误认为方程只有一解。例题11已知圆,圆都内切于动圆,试求动圆圆心的轨迹方程。 错解:圆O2:,即为 所以圆O2的圆心为,半径, 而圆的圆心为,半径, 设所求动圆圆心M的坐标为(x,y),半径为r 则且,所以 即,化简得即为所求动圆圆心的轨迹方程。剖析:上述解法将=3看成,误认为动圆圆心的轨迹为双曲线,这是双曲线的概念不清所致。 事实上,|表示动点M到定点及的距离差为一常数3。 且

14、,点M的轨迹为双曲线右支,方程为例题12点P与定点F(2,0)的距离和它到直线x=8的距离比是1:3,求动点P与定点距离的最值。 错解:设动点P(x,y)到直线x=8的距离为d,则 即 两边平方、整理得=1 (1) 由此式可得: 因为 所以剖析 由上述解题过程知,动点P(x,y)在一椭圆上,由椭圆性质知,椭圆上点的横纵坐标都是有限制的,上述错解在于忽视了这一取值范围,由以上解题过程知,的最值可由二次函数在区间上的单调性给予解决 即:当时,例题13已知双曲线的离心率e=, 过点A()和B(a,0)的直线与原点的距离为,直线y=kx+m与该双曲线交于不同两点C、D,且C、D两点都在以A为圆心的同一圆上,求m 的取值范围。错解 由已知,有解之得: 所以双曲线方程为 把直线 y=kx+m代入双曲线方程,并整理得: 所以(1) 设CD中点为,则APCD,且易知: 所以 (2) 将(2)式代入(1)式得 解得m4或 故所求m的范围是剖析 上述错解,在于在

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 幼儿/小学教育 > 小学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号