电大《工程数学》期末考试答案精品小抄考试必过

上传人:re****.1 文档编号:487193551 上传时间:2022-07-24 格式:DOCX 页数:35 大小:1.26MB
返回 下载 相关 举报
电大《工程数学》期末考试答案精品小抄考试必过_第1页
第1页 / 共35页
电大《工程数学》期末考试答案精品小抄考试必过_第2页
第2页 / 共35页
电大《工程数学》期末考试答案精品小抄考试必过_第3页
第3页 / 共35页
电大《工程数学》期末考试答案精品小抄考试必过_第4页
第4页 / 共35页
电大《工程数学》期末考试答案精品小抄考试必过_第5页
第5页 / 共35页
点击查看更多>>
资源描述

《电大《工程数学》期末考试答案精品小抄考试必过》由会员分享,可在线阅读,更多相关《电大《工程数学》期末考试答案精品小抄考试必过(35页珍藏版)》请在金锄头文库上搜索。

1、1设都是n阶方阵,则下列命题正确的是(A )A 2向量组的 秩是(B )B. 3 3元线性方程组有解的充分必要条件是(A)A. 4. 袋中有3个红球,2个白球,第一次取出一球后放回,第二次再取一球,则两球都是红球的概率是(D )D. 9/255设 是来自正态总体的样本,则(C )是无偏估计 C. 6若是对称矩阵,则等式(B )成立 B. 7( D )D. 8若(A)成立,则元线性方程组有唯一解A. 9. 若条件(C)成立,则随机事件,互为对立事件 C. 且10对来自正态总体(未知)的一个样本,记,则下列各式中(C)不是统计量 C. 11. 设为矩阵,为矩阵,当为(B)矩阵时,乘积有意义B. 1

2、2. 向量组 的极大线性无关组是( A )A13. 若线性方程组的增广矩阵为,则当(D)时线性方程组有无穷多解 D1/2 14. 掷两颗均匀的骰子,事件“点数之和为4”的概率是(C ).C.1/1215. 在对单正态总体的假设检验问题中,检验法解决的问题是(B )B. 未知方差,检验均值16. 若都是n阶矩阵,则等式(B)成立 B. 17. 向量组的秩是(C )C. 318. 设线性方程组有惟一解,则相应的齐次方程组(A )A. 只有0解 19. 设为随机事件,下列等式成立的是(D)D. 1设为三阶可逆矩阵,且,则下式(B )成立 B 2下列命题正确的是(C )C向量组,O的秩至多是 3设,那

3、么A的特征值是(D ) D-4,64矩阵A适合条件( D )时,它的秩为r DA中线性无关的列有且最多达r列 5下列命题中不正确的是( D )DA的特征向量的线性组合仍为A的特征向量6. 掷两颗均匀的骰子,事件“点数之和为3”的概率是( B ) B1/1 7若事件与互斥,则下列等式中正确的是A8. 若事件A,B满足,则A与B一定(A ) A不互斥 9设,是两个相互独立的事件,已知则(B )B2/3 10设是来自正态总体的样本,则(B )是统计量 B 1. 若,则(A)A.3 2. 已知2维向量组,则至多是(B)B 23. 设为阶矩阵,则下列等式成立的是(C) C. 4. 若满足(B),则与是相

4、互独立 B. 5. 若随机变量的期望和方差分别为和,则等式(D )成立 D. 1设均为阶可逆矩阵,则下列等式成立的是( ) A 2方程组相容的充分必要条件是(),其中, B3设矩阵的特征值为0,2,则3A的特征值为 ( ) B0,6 4. 设A,B是两事件,其中A,B互不相容,则下列等式中( )是不正确的 C. 5若随机变量X与Y相互独立,则方差=( )D 6设A是矩阵,是矩阵,且有意义,则是(B )矩阵 7若X1、X2是线性方程组AX=B的解,而是方程组AX = O的解,则( )是AX=B的解A 8设矩阵,则A的对应于特征值的一个特征向量=()C1,1,09. 下列事件运算关系正确的是( )

5、A10若随机变量,则随机变量( N2.,3) )D 11设是来自正态总体的样本,则()是的无偏估计 C 12对给定的正态总体的一个样本,未知,求的置信区间,选用的样本函数服从( )Bt分布 设,则(D)D. 6若,则(A) A. 1/2 乘积矩阵中元素C. 10 设均为阶可逆矩阵,则下列运算关系正确的是(B)B. 设均为阶方阵,且,则下列等式正确的是(D)D. 下列结论正确的是(A)A. 若是正交矩阵,则也是正交矩阵矩阵的伴随矩阵为()C. 方阵可逆的充分必要条件是(B)B.设均为阶可逆矩阵,则(D)D. 设均为阶可逆矩阵,则下列等式成立的是 A. 用消元法得的解为(C)C. 线性方程组(B)

6、B. 有唯一解 向量组的秩为(A)A. 3 设向量组为,则(B)是极大无关组B. 与分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则(D)D. 秩秩若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组(A)可能无解 以下结论正确的是(D)D. 齐次线性方程组一定有解若向量组线性相关,则向量组内(A)可被该向量组内其余向量线性表出 A. 至少有一个向量 9设A,为阶矩阵,既是又是的特征值,既是又是的属于的特征向量,则结论()成立是A+B的属于的特征向量10设,为阶矩阵,若等式()成立,则称和相似为两个事件,则(B)成立 B. 如果(C)成立,则事件与互为对立事件 C. 且

7、 10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中恰有1人中奖的概率为(D) D. 4. 对于事件,命题(C)是正确的 C. 如果对立,则对立某随机试验的成功率为,则在3次重复试验中至少失败1次的概率为(D) D. 6.设随机变量,且,则参数与分别是(A) A. 6, 0.8 7.设为连续型随机变量的密度函数,则对任意的,(A)A. 8.在下列函数中可以作为分布密度函数的是(B) B. 9.设连续型随机变量的密度函数为,分布函数为,则对任意的区间,则(D)D. 10.设为随机变量,当(C)时,有 C. 设是来自正态总体(均未知)的样本,则(A)是统计量 A. 设是来自正态总体(均

8、未知)的样本,则统计量(D)不是的无偏估计D. 二、填空题(每小题3分,共15分) 1设均为3阶方阵,则-182设为n阶方阵,若存在数l和非零n维向量,使得 ,则称l为的特征值 3设随机变量,则a =0.3 4设为随机变量,已知,此时27 5设是未知参数的一个无偏估计量,则有 6设均为3阶方阵,则87设为n阶方阵,若存在数l和非零n维向量,使得,则称为相应于特征值l的特征向量 8若,则0.3 9如果随机变量的期望,那么2010不含未知参数的样本函数称为统计量11. 设均为3阶矩阵,且,则-812.设,213. 设是三个事件,那么发生,但至少有一个不发生的事件表示为.14. 设随机变量,则151

9、5. 设是来自正态总体的一个样本,则16. 设是3阶矩阵,其中,则1217. 当=1 时,方程组有无穷多解18. 若,则0.219. 若连续型随机变量的密度函数的是,则2/320. 若参数的估计量满足,则称为的无偏估计 1行列式的元素的代数余子式的值为= -562已知矩阵满足,则与分别是 阶矩阵3设均为二阶可逆矩阵,则AS4线性方程组 一般解的自由未知量的个数为 25设4元线性方程组AX=B有解且r(A)=1,那么AX=B的相应齐次方程组的基础解系含有 3 个解向量 6 设A,B为两个事件,若P(AB)= P(A)P(B),则称A与B 相互独立 0 1 2a 0.2 0.57设随机变量的概率分

10、布为则a =0.3 8设随机变量,则0.99设为随机变量,已知,那么810矿砂的5个样本中,经测得其铜含量为,(百分数),设铜含量服从N(,),未知,在下,检验,则取统计量 1. 设均为n阶可逆矩阵,逆矩阵分别为,则2. 向量组线性相关,则.3. 已知,则4. 已知随机变量,那么5. 设是来自正态总体的一个样本,则1设,则的根是 2设向量可由向量组线性表示,则表示方法唯一的充分必要条件是 线性无关3若事件A,B满足,则 P(A - B)= 4设随机变量的概率密度函数为,则常数k =5若样本来自总体,且,则7设三阶矩阵的行列式,则=28若向量组:,能构成R3一个基,则数k 9设4元线性方程组AX

11、=B有解且r(A)=1,那么AX=B的相应齐次方程组的基础解系含有 3 个解向量10设互不相容,且,则0 11若随机变量X ,则 1/312设是未知参数的一个估计,且满足,则称为的无偏估计 7 是关于的一个一次多项式,则该多项式一次项的系数是 2 若为矩阵,为矩阵,切乘积有意义,则为 54 矩阵 二阶矩阵 设,则 设均为3阶矩阵,且,则 72 设均为3阶矩阵,且,则 3 若为正交矩阵,则 0 矩阵的秩为 2 设是两个可逆矩阵,则当1时,齐次线性方程组有非零解向量组线性 相关 向量组的秩 设齐次线性方程组的系数行列式,则这个方程组有 无穷多 解,且系数列向量是线性 相关 的向量组的极大线性无关组

12、是向量组的秩与矩阵的秩 相同 设线性方程组中有5个未知量,且秩,则其基础解系中线性无关的解向量有 2 个设线性方程组有解,是它的一个特解,且的基础解系为,则的通解为 9若是的特征值,则是方程的根10若矩阵满足,则称为正交矩阵从数字1,2,3,4,5中任取3个,组成没有重复数字的三位数,则这个三位数是偶数的概率为2/52.已知,则当事件互不相容时, 0.8 , 0.3 3.为两个事件,且,则4. 已知,则5. 若事件相互独立,且,则6. 已知,则当事件相互独立时, 0.65 , 0.3 7.设随机变量,则的分布函数8.若,则 6 9.若,则10.称为二维随机变量的 协方差 1统计量就是不含未知参数的样本函数 2参数估计的两种方法是 点估计 和 区间估计 常用的参数点估计有 矩估计法 和最大似然估 两种方法3比较估计量好坏的两个重要标准是无偏性,有效性 4设是来自正态总体(已知)的样本值,按给定的显著性水平检验,需选取统计量5假设检验中的显著性水平为事件(u为临界值)发生的概率 三、(每小题16分,共64分)A1设矩阵,且有,求解:利用初等行变换得即由矩阵乘法和转置运算得2.设矩阵,求解:利用初等行变换得 即由矩阵乘法得 3.已知,其中,求解:利用初等行变换得即

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 高等教育 > 习题/试题

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号