机电一体化系统的检测环节

上传人:hs****ma 文档编号:486280373 上传时间:2022-12-03 格式:DOC 页数:25 大小:1.01MB
返回 下载 相关 举报
机电一体化系统的检测环节_第1页
第1页 / 共25页
机电一体化系统的检测环节_第2页
第2页 / 共25页
机电一体化系统的检测环节_第3页
第3页 / 共25页
机电一体化系统的检测环节_第4页
第4页 / 共25页
机电一体化系统的检测环节_第5页
第5页 / 共25页
点击查看更多>>
资源描述

《机电一体化系统的检测环节》由会员分享,可在线阅读,更多相关《机电一体化系统的检测环节(25页珍藏版)》请在金锄头文库上搜索。

1、机电一体化第三章教案(讲稿)章节名称 第3章 检测环节教学名称第1节 位置检测环节的构成和接口教学时数 学时 2教学目标1掌握光栅的结构,工作原理,摩尔条纹计数概念2掌握脉冲编码器的结构和工作原理,分类,应用特点3理解感应同步器,旋转变压器,磁栅的工作原理,应用特点课程重点难点1. 栅的结构,工作原理,摩尔条纹计数概念2. 脉冲编码器的结构和工作原理,分类,应用特点3.光电信号的检测、整形、辨向、计数电路的原理分析教学方法及手段1课堂理论课讲授2多媒体教学课件播放辅助教学概 述在机电一体化产品中,无论是机械电子化产品(如数控机床),还是机电相互融合的高级产品(如机器人),都离不开检测与传感器这

2、个重要环节。若没有传感器对原始的各种参数进行精确而可靠的自动检测,那么信号转换、信息处理、正确显示、控制器的最佳控制等,都是无法进行和实现的。检测系统是机电一体化产品中的一个重要组成部分,用于实现计测功能。在机电一体化产品中,传感器的作用就相当于人的感官,用于检测有关外界环境及自身状态的各种物理量(如力、位移、速度、位置等)及其变化,并将这些信号转换成电信号,然后再通过相应的变换、放大、调制与解调、滤波、运算等电路将有用的信号检测出来,反馈给控制装置或送去显示。实现上述功能的传感器及相应的信号检测与处理电路,就构成了机电一体化产品中的检测系统。随着现代测量、控制及自动化技术的发展,传感器技术越

3、来越受到人们的重视,应用越来越普遍。凡是应用到传感器的地方,必然伴随着相应的检测系统。传感器与检测系统可对各种材料、机件、现场等进行无损探伤、测量和计量;对自动化系统中各种参数进行自动检测和控制。尤其是在机电一体化产品中,传感器及其检测系统不仅是一个必不可少的组成部分,而且已成为机与电有机结合的一个重要纽带。一、传感器的分类传感器种类繁多,分类方法也有多种,可以按被测物理量分类,这种分法明确表达了传感器的用途,便于根据不同用途选择传感器。还可按工作原理分类,这种分法便于学习、理解和区分各种传感器。机电一体化产品主要以微型计算机作信息处理机和控制器,传感器获取的有关外界环境及自身状态变化的信息,

4、一般反馈给计算机进行处理或传感器开关型(二值型)接触型(如微动开关、行程开关、接触开关)非接触型(如光电开关、接近开关)模拟型电阻型(如电位器、电阻应变片等)电压、电流型(如热电偶、光电池等)电感、电容型(如电感、电容式位移传感器)数字型计数型(二值计数器)代码型(如旋转编码器、磁尺等)图21 传感器按输出信号性质分类实施控制。因此,这里将传感器按输出信号的性质分类,分为开关型、模拟型和数字型,如图21所示。开关型传感器只输出“1”和“0”或开(ON)和关(OFF)两个值。如果传感器的输入物理量达到某个值以上时,其输出为“1”(ON状态),在该值以下时输出为“0”(OFF状态),其临界值就是开

5、、关的设定值。这种“1”和“0”数字信号可直接送入微型计算机进行处理。数字型传感器有计数型和代码型两大类。计数型又称脉冲计数型,它可以是任何一种脉冲发生器,所发出的脉冲数与输入量成正比,加上计数器就可以对输入量进行计数。计数型传感器可用来检测通过输送带上的产品个数,也可用来检测执行机构的位移量,这时执行机构每移动一定距离或转动一定角度就会发出一个脉冲信号,例如光栅检测器和增量式光电编码器就是如此。代码型传感器即绝对值式编码器,它输出的信号是二进制数字代码,每一代码相当于一个一定的输入量之值。代码的“1”为高电平,“0”为低电平,高低电平可用光电元件或机械式接触元件输出。通常被用来检测执行元件的

6、位置或速度,例如绝对值型光电编码器、接触型编码器等。模拟型传感器输出是与输入物理量变化相对应的连续变化的电量。传感器的输入/输出关系可能是线性的,也可能是非线性的。线性输出信号可直接采用,而非线性输出信号则需进行线性化处理。这些线性信号一般需进行模拟/数字转换(A/D),将其转换成数字信号后再送给微型计算机处理。传感器的发展方向由于传感器位于检测系统的入口,是获取信息的第一个环节,因此它的精度、可靠性、稳定性、抗干扰性等直接关系到机电一体化产品的整机性能指标。因此,传感器的研究与开发一直受到人们的重视,传感器的性能不断提高,主要表现在以下几个方面:(一)新型传感器的开发鉴于传感器的工作机理是基

7、于各种效应和定律,由此启发人们进一步发现新现象、采用新原理、开发新材料、采用新工艺,并以此研制出具有新原理的新型物性型传感器,这是发展高性能、多功能、低成本和小型化传感器的重要途径。总之,传感器正经历着从以结构型为主转向以物性型为主的过程。(二)传感器的集成化和多功能化随着微电子学、微细加工技术和集成化工艺等方面的发展,出现了多种集成化传感器。这类传感器,或是同一功能的多个敏感元件排列成线性、面型的阵列型传感器;或是多种不同功能的敏感元件集成一体,成为可同时进行多种参数测量的传感器;或是传感器与放大、运算、温度补偿等电路集成一体具有多种功能实现了横向和纵向的多功能。(三)传感器的智能化“电五官

8、”与“电脑”的相结合,就是传感器的智能化。智能化传感器不仅具有信号检测、转换功能,同时还具有记忆、存储、解析、统计处理及自诊断、自校准、自适应等功能。如进一步将传感器与计算机的这些功能集成于同一芯片上,就成为智能传感器。3.1 位置检测环节的构成和接口感应同步器1。概述及应用特点感应同步器是利用电磁感应原理把两个平面绕组间的位移量转换成电信号的一种位移传感器。按测量机械位移的对象不同可分为直线型和圆盘型两类,分别用来检测直线位移和角位移。由于它成本低,受环境温度影响小,测量精度高,且为非接触测量,所以在位移检测中得到广泛应用,特别是在各种机床的位移数字显示、自动定位和数控系统中。2。感应同步器

9、的结构直线型感应同步器由定尺和滑尺两部分组成,如图25所示。图26为直线型感应同步器定尺和滑尺的结构。其制造工艺是先在基板(玻璃或金属)上涂上一层绝缘粘合材料,将铜箔粘牢,用制造印刷线路板的腐蚀方法制成节距T一般为2mm的方齿形线圈。定尺绕组是连续的。滑尺上分布着两个励磁绕组,分别称为正弦绕组和余弦绕组。当正弦绕组与定尺绕组相位相同时,余弦绕组与定尺绕组错开1/4节距。滑尺和定尺相对平行安装,其间保持一定间隙(0.050.2mm)。3。感应同步器的工作原理在滑尺的正弦绕组中,施加频率为f(一般为210kHz)的交变电流时,定尺绕组感应出频率为f的感应电势。感应电势的大小与滑尺和定尺的相对位置有

10、关。当两绕组同向对齐时,滑尺绕组磁通全部交链于定尺绕组,所以其感应电势为正向最大。移动1/4节距后,两绕组磁通不交链,即交链磁通量为零;再移动1/4节距后,两绕组反向时,感应电势负向最大。依次类推,每移动一节距,周期性的重复变化一次,其感应电势随位置按余弦规律变化,见图27a。图25 直线型感应同步器的组成1定尺 2滑尺图26 直线型感应同步器定尺、滑尺的结构图27 定尺感应电势波形图a)仅对A绕组激磁 b)仅对B绕组激磁同样,若在滑尺的余弦绕组中,施加频率为f的交变电流时,定尺绕组上也感应出频率为f的感应电势。其感应电势随位置按正弦规律变化。见图27b。设正弦绕组供电电压为Us,余弦绕组供电

11、电压为Uc,移动距离为x,节距为T,则正弦绕组单独供电时,在定尺上感应电势为 (29)余弦绕组单独供电所产生的感应电势为 (210)由于感应同步器的磁路系统可视为线性,可进行线性叠加,所以定尺上总的感应电势为 (211)式中 K定尺与滑尺之间的耦合系数; 定尺与滑尺相对位移的角度表示量(电角度); T节距,表示直线感应同步器的周期,标准式直线感应同步器的节距为2mm。感应同步器是利用感应电压的变化来进行位置检测的。根据对滑尺绕组供电方式的不同,以及对输出电压检测方式的不同,感应同步器的测量方式有相位和幅值两种工作法,前者是通过检测感应电压的相位来测量位移,后者是通过检测感应电压的幅值来测量位移

12、。4。测量方法1.相位工作法当滑尺的两个励磁绕组分别施加相同频率和相同幅值,但相位相差90o的两个电压时,定尺感应电势相应随滑尺位置而变。设 (212) (213) 则= (214) = 从上式可以看出,感应同步器把滑尺相对定尺的位移x的变化转成感应电势相角的变化。因此,只要测得相角,就可以知道滑尺的相对位移x: (215)2.幅值工作法在滑尺的两个励磁绕组上分别施加相同频率和相同相位,但幅值不等的两个交流电压 (216) (217)根据线性叠加原理,定尺上总的感应电势U2为两个绕组单独作用时所产生的感应电势U2和U2之和。即 (218)式中 K Umsin()感应电势的幅值;Um滑尺励磁电压

13、最大的幅值; 滑尺交流励磁电压的角频率,=2f;指令位移角。由上式知,感应电势U2的幅值随()作正弦变化,当=时,U2=0。随着滑尺的移动,逐渐变化。因此,可以通过测量U2的幅值来测得定尺和滑尺之间的相对位移。 旋转变压器旋转变压器概述旋转变压器是一种利用电磁感应原理将转角变换为电压信号的传感器。由于它结构简单,动作灵敏,对环境无特殊要求,输出信号大,抗干扰好,因此被广泛应用于机电一体化产品中。(一)旋转变压器的构造和工作原理旋转变压器在结构上与两相绕组式异步电机相似,由定子和转子组成。当从一定频率(频率通常为400Hz、500Hz、1000Hz及5000Hz等几种)的激磁电压加于定子绕组时,

14、转子绕组的电压幅值与转子转角成正弦、余弦函数关系,或在一定转角范围内与转角成正比关系。前一种旋转变压器称为正余弦旋转变压器,适用于大角位移的绝对测量;后一种称为线性旋转变压器,适用于小角位移的相对测量。 图210 正余弦变压器原理图D1D2激磁绕组 D3D4辅助绕组 Z1Z2余弦输出绕组 Z3Z4正弦输出绕组如图210所示,旋转变压器一般做成两极电机的形式。在定子上有激磁绕组和辅助绕组,它们的轴线相互成90。在转子上有两个输出绕组正弦输出绕组和余弦输出绕组,这两个绕组的轴线也互成90,一般将其中一个绕组(如Z1、Z2)短接。(二)旋转变压器的测量方式当定子绕组中分别通以幅值和频率相同、相位相差为90的交变激磁电压时,便可在转子绕组中得到感应电势U3,根据线性叠加原理,U3值为激磁电压U1和U2的感应电势之和,即

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 机械/制造/汽车 > 汽车技术

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号