聚合物改性总结

上传人:夏** 文档编号:485436621 上传时间:2023-07-06 格式:DOCX 页数:33 大小:211.58KB
返回 下载 相关 举报
聚合物改性总结_第1页
第1页 / 共33页
聚合物改性总结_第2页
第2页 / 共33页
聚合物改性总结_第3页
第3页 / 共33页
聚合物改性总结_第4页
第4页 / 共33页
聚合物改性总结_第5页
第5页 / 共33页
点击查看更多>>
资源描述

《聚合物改性总结》由会员分享,可在线阅读,更多相关《聚合物改性总结(33页珍藏版)》请在金锄头文库上搜索。

1、零、绪论聚合物改性的定义:通过物理和机械方法在高分子聚合物中加入无机或有机物质,或将不同类高 分子聚合物共混,或用化学方法实现高聚物的共聚、接枝、嵌段、交联,或将上述方法联用,以达 到使材料的成本下降,成型加工性能或最终使用性能得到改善,或使材料仅在表面以及电、磁、光、 热、声、燃烧等方面赋予独特功能等效果,统称为聚合物改性。聚合物改性的目的:所谓的聚合物改性,突出在一个改字。改就是要扬长补短,要发扬和保留聚合物原有的优势,抑制和克服聚合物原有的缺点,并根据实际需要赋予聚合物新的性能。聚合物改性的三个主要目的: 克服聚合物原有的缺点,赋予聚合物某些高新的性能与功能 改善聚合物的加工工艺性能 降

2、低材料的生产成本总之,聚合物改性就是要在聚合物的使用性能、加工性能与生产成本三者之间寻求一个最佳 的平衡点。聚合物改性的意义:1. 新品种的开发越来越困难(已开发的品种数以万计,工业化的三百余种。资源限制、开发费用、 环境污染)2. 使用性能的多样化、复杂化,要求材料有多种性能及功能,单一聚合物难以实现。3. 聚合物改性科学应运而生获取新性能聚合物的简洁而有效的方法。 聚合物改性的主要方法:共混改性;填充改性;纤维增强复合材料;化学改性;表面改性聚合物改性发展概况几个重要的里程碑事件:1942年,采用机械熔融共混法将NBR掺和于PVC之中,制成了分散均匀的共混物。这是第一个实现了工业化生产的聚

3、合物共混物。1948 年,HIPS1948 年,机械共混法 ABS 问世,聚合物共混工艺获得重大进展。二者可称为高分子合金系统研究开发的起点。1942年,制成了苯乙烯和丁二烯的互穿聚合物网络(IPN),商品名为“Styralloy”,首先使用了 聚合物合金这一名称。1960年,建立了 IPN的概念,开始了一类新型聚合物共混物的发展。IPN 已成为共混与复合领域一个独立的重要分支。1965年,Kat。研究成功0s04电镜染色技术,使得可用透射电镜直接观察到共混物的形态,这一实 验技术大大促进了聚合物改性科学理论和实践的发展,堪称聚合物发展史上重要的里程碑。1965年,热塑弹性体SBS、SIS问世

4、,并用相畴(domai n)理论加以解释。制得了在室温下具有橡 胶的高弹性,塑料加工温度下可进行加工的新型材料,聚合物改性理论也获得重要进展。一、共混1共混改性:化学共混、物理共混、物理化学共混物理共混(blend)就是通常意义上的“混合”,简单的机械共混;物理/化学共混(就是通常所称的反应共混)是在物理共混的过程中兼有化学反应,可附属于物理 共混;化学共混则包括了接枝、嵌段共聚及聚合物互穿网络(IPN)等,已超出通常意义上的“混合”的 范畴,而应列入聚合物化学改性的领域了。根据物料形态分类:熔融共混、溶液共混、乳液共混熔融共混是将聚合物组分加热到熔融状态后进行共混。优点:原料准备操作简单。熔

5、融时, 扩散对流作用激化,强剪切分散作用,相畴较小。强剪切及热的作用下,产生一定数量的接枝或 嵌段共聚物,促进体系相容性。溶液共混是将聚合物组分溶于溶剂后,进行共混。 乳液共混是将两种或两种以上的聚合物乳液进行共混的方法。2共混物形态的两大体系三种基本类型:均相体系非均相体系:海-岛结构 特点(定义)为一种两相体系,且一相为连续相,一相为分散相 海-海结构 特点(定义)也是两相体系,但两相皆为连续相,相互贯穿。3聚合物共混物均相体系与非均相体系的判定依据:Tg 均相体系:两种聚合物共混后,形成的共混物具有单一的 Tg; 两相体系:两种聚合物共混后,形成的共混物具有两个 Tg。4分散度及均一性定

6、义 分散度是指“海-岛结构”两相体系中分散相物料的破碎程度,用通俗的话说,就是指打得散不散。可以用分散相颗粒的平均粒径和粒径分布来表征。打得碎,粒径小,就说分散程度高;打得不碎, 粒径大,分散不好。 均一性是指分散相物料分散的均匀程度,亦即分散相浓度的起伏大小。用通俗的话说,是指混得匀 不匀。均一性可借助于数理统计的方法进行定量表征。5共混物的相容性概念 概念间的关系(a) 完全相容:混合前,两种聚合物分别有自己的Tg;共混后,形成的共混物只有一个Tg;(b) 部分相容:共混后,形成的共混物仍有两个Tg,与混合前相比,两个Tg相互靠近了;(c) 不相容:共混后仍是两个Tg,且其位置与混合前基本

7、相同。广义相容性概念:关于“不相容体系的相容性”: 例如:文献报道,丁苯橡胶/顺丁橡胶并用体系的相容性比丁腈橡胶/一并橡胶的相容性好。实际上,这两个体系都是互不相容的,都有两个Tg。习惯上仍然可以对他们进行比较从而引出 了不相容体系的相容性这种习惯说法,这是一种广义的相容性概念。广义相容性定义:这里所指的相容性是指两种材料共混时分散难易程度和所得共混物的动力学 稳定性。越容易分散,所得共混体系的稳定性越大,我们就说它们的相容性越好,尽管它们本 来是不相容的。6共混物形态的研究方法、共混物形态的主要影响因素 共混物形态的研究方法有很多。可分为两大类:其一是直接观测形态的方法,如电子显微镜法,相差

8、显微镜T可以直接观察到共混体系的形貌与结 构 其二是间接测定的方法,如动态力学性能测定法。可以测定共混体系的Tg,间接推断共混体系的结构。常用的制样方法有染色法、刻蚀法、低温折断法等。 几种方法遵循的共同原则是:先将塑料相与橡胶相分开,之后加以研究。几种方法可结合使用。 其它试样填充体系:超薄切片:TEM断面:SEM纳米体系:TEM可观察到纳米粒子在聚合物基 体中的分散海岛结构研究中的三个重要问题:分散相与连续相;分散相的粒径及其分布;两相之间的界 面结合;受到多种因素的影响影响因素1.共混组分配比的影响;2.熔体粘度的影响;3.粘度与配比的综合影响;4.粘度比、剪 切应力及界面张力的综合影响

9、;5.其它因素的影响共混组分配比的影响:最大填充分数(体积分数)为74%。即当某一组分的含量74%,不再可能 是分散相;反之,当某一组分的含量74%A是连续相B-1: B74%B是连续相26%VB 1 A含量B,配比;nA/nBi A粘度低处于底部,两组分接近,nA/nB 1 A为连续相粘度比、剪切应力及界面张力的综合影响:在共混过程中,体系还会受到外力,通常是剪切力的作用。忙此外,两相间的相界面也对体系形态有一定影响。引入参数 入二n2/ni 其中ni 连续相的粘度;n2分散相的粘度 k=Td/Q其中t剪切应力;。一一两相间界面张力;d分散相粒径令 T 二 n Y 则有 k= n Y d/

10、o11上式反映了 d与Y和o有关,即共混物的形态与剪切应力及界面张力有关(a)入与d的关系极小值若Y O都不变,k=cd d也可达到一极小值。T等粘点的重要性:n2ni,体系容易得到海海结构;对于海岛结构,n2ni,分散相粒径可达到极小值。(b) 丫、 o的影响k=(nlY ) d/otZ d在实际中,两组分决定后,O不变,k不变,n1不变,YZ d共混时,平衡粒径随剪切速率上升而下降设备与工艺的选择对形态有影响k=ni Y d/o还说明d与o成正比,其他条件不变,o d 降低两相界面张力,有利于减小分散相粒径。其它因素的影响:加工温度相容性7试述弹性体增韧理论的发展概况。用银纹剪切带等理论解

11、释弹性体增韧塑料体系的机理。具 体分析分散相状况对改性效果的影响用银纹一剪切带等理论解释弹性体增韧塑料体系的机理:P28弹性体为分散相,塑料为连续相。塑料基体的形变:剪切形变过程 银纹化过程a. 剪切形变材料发生拉伸作用时,会发生剪切形变。这是因为拉伸力可分解为剪切力分量,它的最大值出现在与正应力成45的斜面上。在塑料发生剪切形变的地方,可观察到剪切带的形成。厚度1 lim,宽度:550 |im。大量不规则线簇,每一条的厚度构成|im形成原因:i由于应变软化作用引起ii结构缺陷造成的局部应力集中特征:i产生细颈i密度基本不变作用机理:剪切带的形成,可耗散外力作用于样品上的能量,使材料有韧性。

12、塑料:未改性一一内部结构不均一或缺陷诱发改 性一一分散相颗粒诱发,达到增韧目的。b. 银纹化银纹是由聚合物细丝和贯穿其中的空洞所构成。聚合物细丝:100400入;空洞:100200入方向:垂直于外加应力方向厚度:103104特征:i应力发白ii密度降低(空洞)作用机理:银纹化的产生,使大分子产生了很大的塑性形变及粘弹形变,形成细丝,使作用与样 品的能量被消耗掉。三个阶段:引发、增长、终止塑料:未改性结构缺陷或不均匀而造成的应力集中 改性分散相粒子是引发银纹的中心,两相界面是引发银纹的主要场所银纹必须被及时终止,才有增韧作用终止因素:i与剪切带的相互作用i 银纹尖端应力集中因子的下降iii银纹支

13、化弹性体增韧理论的发展概况:a.传统的弹性体增韧机理i能量的直接吸收理论;ii次级转变温度理论;i屈服膨胀理论;iv裂纹核心理论(为银纹剪切带理论奠定基础)i能量的直接吸收理论:Mrez 1956年提出,又称为微裂纹理论第一个橡胶增韧理论。机理:样品受到冲击时会产生裂纹,橡胶粒子跨越裂纹两岸,裂纹要发展,就必须拉伸橡胶颗粒, 因而吸收了大量的能量,提高了材料的冲击强度。缺点:将韧性的提高主要归结于橡胶粒子吸收能量的作用,这无疑是一个原因,但不是主要原因。 按Newman和Strella的计算,这种机理所吸收的能量不超过冲击能的1/10。这种理论不能解释 气泡以及小玻璃珠之类的分散颗粒有时也有明

14、显增韧效应的现象。ii次级转变温度理论由Nielsen提出,聚合物的韧性往往与次级转变温度有关。PC、POM -40C有低温转变峰,因而冲击强度较高。在橡胶增韧塑料的体系中,橡胶的Tg即相当于一个很强的次级转变峰,提高了韧性。缺点:没有普适性;如PPO并无明显的低温次级转变峰,冲击强度较高;聚甲基丙烯酸环己酯, 有明显的低温峰,冲击强度却甚低。iii屈服膨胀理论Newman和Strella 1965年首先提出。机理:增韧塑料之所以有很大的屈服变形值是由于膨胀活化。橡胶颗粒在其周围的基体树脂中产生 了静张力,引起体积膨胀,增加了自由体积,从而使基体的Tg下降。这样就是基体能发生很大的 塑性形变,

15、从而提高了材料的韧性。缺点:橡胶颗粒产生静张力场的概念是正确的,这是因为橡胶颗粒的应力集中作用以及其与基 体的热膨胀系数的差别所引起的。但是,这种静张力的作用是不大可能足以使材料产生如此大的屈 服形变。所以这不能作为增韧的主要原因。硬性颗粒如Ti02以及气泡会产生更大的膨胀效应, 应该有更大的增韧作用,显然与事实不符。iv裂纹核心理论由Schmitt提出机理:橡胶颗粒作为应力集中点,产生了大量的小裂纹而不是大裂纹。扩展大量的小裂纹比扩展少 数的大裂纹需要更多的能量。同时,大量小裂纹的应力场相互干扰,减弱了裂纹发展的前沿应力, 从而会导致裂纹的终止。应力发白现象就是形成大量小裂纹的原因。缺点:第一,未能将裂纹和银纹加以区别。小裂纹其实就是银纹,没阐明小裂纹的特性。 第二,只

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号