宁波电力材料项目申请报告

上传人:新** 文档编号:483847427 上传时间:2022-10-30 格式:DOCX 页数:114 大小:111.11KB
返回 下载 相关 举报
宁波电力材料项目申请报告_第1页
第1页 / 共114页
宁波电力材料项目申请报告_第2页
第2页 / 共114页
宁波电力材料项目申请报告_第3页
第3页 / 共114页
宁波电力材料项目申请报告_第4页
第4页 / 共114页
宁波电力材料项目申请报告_第5页
第5页 / 共114页
点击查看更多>>
资源描述

《宁波电力材料项目申请报告》由会员分享,可在线阅读,更多相关《宁波电力材料项目申请报告(114页珍藏版)》请在金锄头文库上搜索。

1、泓域咨询/宁波电力材料项目申请报告目录第一章 项目背景及必要性7一、 硅负极失效机理:硅碳膨胀低循环,硅氧嵌锂低首效7二、 产业化进展:硅碳消费已规模应用,圆柱+硅氧为动力先行方案8三、 着力建设三大科创高地,打造高水平创新型城市8四、 项目实施的必要性10第二章 行业、市场分析11一、 硅碳:循环为关键,物理研磨、CVD、PVD多路线并行11二、 趋势:负极最确定迭代方向,圆柱率先放量12三、 硅氧:首效为关键,从预镁到预锂13第三章 项目概况14一、 项目名称及建设性质14二、 项目承办单位14三、 项目定位及建设理由15四、 报告编制说明16五、 项目建设选址17六、 项目生产规模17七

2、、 建筑物建设规模18八、 环境影响18九、 项目总投资及资金构成18十、 资金筹措方案19十一、 项目预期经济效益规划目标19十二、 项目建设进度规划19主要经济指标一览表20第四章 建设规模与产品方案22一、 建设规模及主要建设内容22二、 产品规划方案及生产纲领22产品规划方案一览表22第五章 建筑工程说明24一、 项目工程设计总体要求24二、 建设方案26三、 建筑工程建设指标26建筑工程投资一览表27第六章 运营管理模式29一、 公司经营宗旨29二、 公司的目标、主要职责29三、 各部门职责及权限30四、 财务会计制度33第七章 发展规划分析39一、 公司发展规划39二、 保障措施4

3、0第八章 法人治理结构43一、 股东权利及义务43二、 董事50三、 高级管理人员55四、 监事57第九章 原辅材料及成品分析59一、 项目建设期原辅材料供应情况59二、 项目运营期原辅材料供应及质量管理59第十章 工艺技术设计及设备选型方案60一、 企业技术研发分析60二、 项目技术工艺分析62三、 质量管理63四、 设备选型方案64主要设备购置一览表65第十一章 项目节能分析66一、 项目节能概述66二、 能源消费种类和数量分析67能耗分析一览表68三、 项目节能措施68四、 节能综合评价69第十二章 进度规划方案71一、 项目进度安排71项目实施进度计划一览表71二、 项目实施保障措施7

4、2第十三章 项目投资分析73一、 投资估算的依据和说明73二、 建设投资估算74建设投资估算表76三、 建设期利息76建设期利息估算表76四、 流动资金77流动资金估算表78五、 总投资79总投资及构成一览表79六、 资金筹措与投资计划80项目投资计划与资金筹措一览表80第十四章 经济收益分析82一、 经济评价财务测算82营业收入、税金及附加和增值税估算表82综合总成本费用估算表83固定资产折旧费估算表84无形资产和其他资产摊销估算表85利润及利润分配表86二、 项目盈利能力分析87项目投资现金流量表89三、 偿债能力分析90借款还本付息计划表91第十五章 项目风险评估93一、 项目风险分析9

5、3二、 项目风险对策95第十六章 招投标方案97一、 项目招标依据97二、 项目招标范围97三、 招标要求98四、 招标组织方式98五、 招标信息发布100第十七章 项目综合评价101第十八章 补充表格103营业收入、税金及附加和增值税估算表103综合总成本费用估算表103固定资产折旧费估算表104无形资产和其他资产摊销估算表105利润及利润分配表105项目投资现金流量表106借款还本付息计划表108建设投资估算表108建设投资估算表109建设期利息估算表109固定资产投资估算表110流动资金估算表111总投资及构成一览表112项目投资计划与资金筹措一览表113第一章 项目背景及必要性一、 硅

6、负极失效机理:硅碳膨胀低循环,硅氧嵌锂低首效硅基负极材料在规模使用过程中仍存在三个关键问题需要解决:硅碳:膨胀粉碎+SEI膜形成。由于硅材料的体积变化率为320%,而碳材料膨胀仅为12%,硅负极材料在脱嵌锂过程中反复膨胀收缩,致使负极材料粉化、脱落,并最终导致负极材料失去电接触而使电池彻底失效。硅氧由于添加了氧原子,膨胀率下降至120%,循环性能比纳米硅要好。硅氧:SEI膜形成+嵌锂不可逆。在不断的充放电中,硅负极表面会有SEI膜的持续生长。一直不可逆地消耗电池中有限的电解液和来自正极的锂,最终导致电池容量的迅速衰减。对于硅氧路线来讲,相较于纯Si还会发生嵌锂的现象。由于SiO2首周与锂发生不

7、可逆反应,该材料的首效一般较低,其机制可以通过扩散模型来说明:在锂化过程中,Li扩散到Si电极的内部形成锂硅氧化合物;而在脱锂的过程中,由于扩散能力有限,Li不能完全扩散出来,因此一些Li将困于Si电极中。据学术实验测算,约有70%的Li由于SEI膜形成而损失,而另一部分Li则被困于Si电极中。二、 产业化进展:硅碳消费已规模应用,圆柱+硅氧为动力先行方案硅基负极两种主流路线,硅氧动力领域率先应用。硅负极目前主要分为硅氧和硅碳两种工艺路线,由于硅氧的循环性能和倍率性能更佳,更适合应用于动力电池领域,率先在动力电池领域使用,硅碳负极的克容量较高,首效较高,主要应用于消费电子和电动工具等领域。硅基

8、负极仍处在迭代进程,工艺不断改进。硅负极目前正处于产品迭代期,代际之间性能参数有所差异。硅碳主要以提升循环性能、容量为主,硅氧负极主要提升首效为主,二者实现的路径有所差异。三、 着力建设三大科创高地,打造高水平创新型城市坚持创新在现代化建设全局中的核心地位,以超常规举措增创人才引领、创新策源、产业创新和创新生态优势,打造新材料、工业互联网、关键核心基础件三大科创高地,加快建设高水平创新型城市,为推进高质量发展注入强大动力。1、加速开放揽才产业聚智加快引进高端人才。实施顶尖人才集聚行动,优化整合人才计划、人才工程,实施“甬江引才工程”,确保入选人才数量持续增长,打造高素质人才发展重要首选地。大力

9、实施柔性引才模式,建立竞争性人才使用机制,支持在甬高校院所面向全球遴选学术校长(院长)、首席专家。构建全球引才网络体系,优化人才国际交流服务,建强浙江创新中心、院士之家、人才之家等高能级人才服务平台,集聚更多海内外高端人才资源。2、大力提升科技创新能力加快构筑高能级创新平台。深化国家自主创新示范区建设,推动国家高新区扩容提质建设世界一流高科技园区,争取区县(市)省级高新区全覆盖。集中力量建设甬江科创大走廊,科学布局建设文创港、软件园等一批创新单元,推动科研设施、大院大所、科创企业加速集聚,打造以甬江为主轴的创新带。加快建设极端环境服役材料多因素强耦合综合研究装置、材料与微纳器件制备平台、工业智

10、能信息中心等科学装置。加快构建新型实验室体系,高起点建设甬江实验室并争创国家级实验室,加快国家、省、市重点实验室梯队建设,到2025年省级(含)以上重点实验室达到40家。3、强化企业创新主体地位壮大创新型企业梯队。打造科技型中小企业、高新技术企业、创新型领军企业梯队,完善梯次培育和全链条培育机制,形成若干有国际竞争力的创新型领军企业群。支持企业建设工程(技术)中心、企业研究院、重点实验室、院士工作站、博士后工作站等研发机构,争创省级以上技术创新中心,承担重大科技项目。到2025年,高新技术企业、科技型中小企业数实现倍增,国家级高新技术企业超过6000家。4、营造一流创业创新生态建立健全协同创新

11、体系。实施国际创新合作计划,加强与创新强国科技合作,建设中日国际科技合作中心、中东欧国家科技创新研究中心。加强国内科技合作,在上海、杭州、深圳等地建设科技合作园区。支持本土企业、高等院校、科研机构参与国际科技合作计划,支持企业设立海外研发中心、联合实验室和人才合作平台。支持领军企业联合高校院所、产业链上下游企业组建创新联合体,协同开展关键核心技术攻关。四、 项目实施的必要性(一)提升公司核心竞争力项目的投资,引入资金的到位将改善公司的资产负债结构,补充流动资金将提高公司应对短期流动性压力的能力,降低公司财务费用水平,提升公司盈利能力,促进公司的进一步发展。同时资金补充流动资金将为公司未来成为国

12、际领先的产业服务商发展战略提供坚实支持,提高公司核心竞争力。第二章 行业、市场分析一、 硅碳:循环为关键,物理研磨、CVD、PVD多路线并行硅碳的技术迭代方向从产品的角度来讲,基本围绕着防止SEI膜形成、降低膨胀为主。纳米硅需要经过硅粉制备、碳包覆两大工艺来形成最终的成品硅碳负极,目前主流的生产工艺以研磨为主。1)SEI膜形成:碳包覆纳米硅是以纳米硅为原材料,表面包覆碳层的结构。(1)碳包覆可将硅保护起来,从而避免电极与电解液的直接接触,抑制SEI膜的过度生长;(2)碳材料具有良好的导电性,可在硅表面构筑连续的导电网络,降低电池内阻;(3)碳材料具有较强的机械性能,能够缓冲硅体积膨胀产生的应力

13、变化,进而维持电极结构的完整性。对于硅碳路线,除了常规碳包覆也衍生出了以优化结构为主的技术路线。如Group14,其生产硅碳复合材料的方式是先用高分子材料制造出像海绵一样具有多孔结构的碳颗粒,然后向碳颗粒的孔隙里加入硅纳米颗粒形成复合材料。也改善了循环性能。低膨胀:对于纳米硅来讲,硅颗粒大小是关键。粒径越大,成本越低,但是循环性能有可能较差。大尺寸的硅负极颗粒的体积膨胀会导致复合材料内部开裂,破坏电子传导的连续性,降低性能,理论上来讲硅的晶粒越小循环性越好。对比30nm、100nm、500nm、3m的充放电曲线显示,随着硅颗粒尺寸减小其容量保持率和库仑效率逐渐增大,循环性能更佳。颗粒的大小核心

14、在于硅粉的制备:传统研磨升级&技术革新。颗粒尺寸的减小通常有两种(研磨or气相沉积)方式,气相沉积又分为PVD、CVD。1)研磨:目前主流方案,需利用高能球磨等进行技术改进。传统物理研磨法研磨出来的粒径约在100nm的水平,远不符合硅负极的粒径要求,需要新的研磨工艺“自上而下”的方法对大颗粒的硅进行研磨、破碎,不断降低其颗粒尺寸,目前研磨的单吨成本在20万/吨,为纳米硅成本最低的方案。2)PVD:性能佳但成本高,等离子蒸发冷凝为方向。PVD中等离子蒸发冷凝法是近10年来用于制造高纯、超细、球形、高附加值粉体的一种安全高效的方法。通过等离子热源将反应原料气化成气态原子、分子或部分电离成离子,并通

15、过快速冷凝技术,冷凝为固体粉末。二、 趋势:负极最确定迭代方向,圆柱率先放量硅基负极能量密度优势显著。随着新能源汽车对续航能力要求的不断提高,锂电池负极材料也在向着高比容量方向发展。目前,石墨材料的比容量性能逐渐趋于理论值(372mAh/g)。硅基材料由于具有极高的能量密度(理论比容量为4200mAh/g,是石墨负极材料的10倍)、较低的脱锂电位以及相对出色的安全性能,有望成为下一代负极材料研发的主流方向。三、 硅氧:首效为关键,从预镁到预锂氧化亚硅:CVD为关键,预镁、预锂为迭代方向。碳复合材料是以氧化亚硅材料为核,这里的氧化亚硅一般是采用化学气相沉积法将210nm的硅颗粒均匀分布在SiO2的基质中。其单体容量一般为13001700mAh/g。由于硅材料颗粒更小、分散更加均匀且材料结构更加致密稳定,该材料膨胀较低,拥有非常好的长循环稳定性。第三章 项目概况一、 项

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 行业资料 > 国内外标准规范

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号