关于[x]以及{x}的性质与应用摘 要:[]和{}是非常重要的数论函数,其他许多数学分支都要涉及到,在国内外的数学竞赛中也经常出现含有[]和{}的问题,这类问题新颖独特,颇具启发性本文主要讨论[]以及{}的性质,和[]以及{}在数学中的应用,以及[]以及{}在数学竞赛中的应用关键词: 取整函数;小数函数;性质;应用;例题Abstract :[x] and {x} are the extremely important arithmetical functions, other many mathematics branch all must involve, also frequently appears in the domestic and foreign mathematics competition includes [x] and the {x} question, this kind of question novel unique, quite has the instructive.This article mainly discusses [x] as well as the {x} nature, with [x] as well as {x} in mathematical analysis application, as well as [x] as well as {x} in mathematics competition application.Key words: Integer function Decimal function Nature Application Sample question 目录1、引言 - 1 -2、[x]以及{x}的定义 - 1 -2.1、取整函数[x]的定义 - 1 -2.2、小数函数{x}的定义 - 3 -3、取整函数[x]的基本性质及证明 - 3 -4、取整函数[x]以及小数函数{x}的图像及其性质 - 5 -5、取整函数[x]以及小数函数{x}在解题中的应用 - 6 -5.1、取整函数[x]一些基本性质的应用 - 6 -5.2、数学竞赛中用多种方法解决取整函数 - 7 -5.3、取整函数[x]在极限、积分、导数、级数中的应用例题 - 11 -6、回答引言提出的问题 - 13 -7、总结 - 14 -参考文献 - 15 -致 谢 - 16 -1、引言某市电信局130与137、138、139有不同是收费方式。
137、138、139的收费方式为:月租费50元,基本通话费0.40元/分钟,不足一分钟按一分钟计算130的收费方式为:没有月租费,但是基本通话费为0.54元/分钟,不足一分钟也按一分钟计算小明今购了一部,他每月通话的时间大约20小时,请帮他参考一下,选用哪种收费方式的网络合算?我们可以用取整函数解决这个问题,那什么是取整函数呢?我们在学习数学的过程中,常常看到取整函数的身影,在离散数学、微积分、数学分析中都有取整函数的应用,纵观几年的数学竞赛,发现了取整函数也是数学竞赛的热点之一然而含有取整函数的题目往往比较困难,要解决关于取整函数的问题我们就要好好了解取整函数,什么是取整函数,它有什么性质,它的应用有哪些2、[x]以及{x}的定义[1]2.1、取整函数[x]的定义 函数,称为高斯函数,又称取整函数 给定实数,我们可以对它进行一种特殊的运算—取整运算,即取出不超过的最大整数部分,通常记为[],[]满足下面的三个条件:(1) []是整数;(2) [] ; (3) < []+1这就是说,整数[]不超过,而由(3)可知,大于[]的整数[]+1,[]+2,……都大于,即[]是不超过的最大整数。
与[]之间适合-1< [] <[]+1例如:[6]=6,[3.2]=3,[]=1,[-4]=-4,[-0.1]=-1,[-3.5]=-4对于较小的,我们不难求[]但是对较大的,求[]的基本方法还是回到定义中去,即对作适当的估计或变形例题1 求以及的整数部分,这里的n为正整数解 先来求,为此作421的如下估计:,推出20是不超过的最大整数,所以[]=20求的方法还是要先估计,我们有,故由于是整数,上面的不等式表明介于两个相继的整数之间,所以[]=注:此题是根据取整函数[x]的定义分别对相对简单及相对困难的函数进行取整运算例题2求适合-[]-2=0的一切实数解:[],得--2-[]-2=0--20(-2)(+1) 0于是-12当01时,[]=0代入原式,得=2(不正确);当1<2时,[]=1,代入原式,得=3(正确);当=2时,代入原式,得=4(正确),所以=3,4注:此题是对取整函数[x]定义的应用2.2、小数函数{x}的定义和整数部分紧密相关的是其小数部分,记为{},定义为{} =-[],由[] <[]+1不难得知0{}<1,反过来,若=[],自然有{}=0这些简单的事实有时很有用处,对于给定的,要求出{},先求出[]就可以。
例题3 求所有的正数,使得其整数部分[]以及小数部分{}满足关系解:设[]=n,{ }=t,则n 0,0 t<1,由于={}+[],所以 (1)如果t=0,则由上式知n=0,从而x==0,这不合要求现在设,则,但由(1)知,所以,即再从0 1, N,则从1到的整数中,的倍数有[/]个例题5 证明定理3证:由[]<[]+1,两边乘以m得 []x<([]+1)由此可见,从1到的整数中,的倍数是,2,, [],它们共有[/]个定理4设为任一素数,在中含的最高乘方次数记为,则有:例题6[2] 证明定理4证明:由于是素数,所有中所含的次方数等于的各个因数所含的次方数之总和。
由定理3可知,在中,有个的倍数,有个的倍数,有个的倍数,,当时,,所以命题成立由定理4得出的推论 若p是大于n的任一个素数,则的标准分解式为=,其中n<,k4、取整函数[x]以及小数函数{x}的图像及其性质下面来讨论取整函数(取整函数)的图像及的图像和性质对于函数,如何做出它的图像呢?我们先来分析一下取整函数的图像的基本性质和特征1)由的性质知的图形在的图形的下方2) 由的性质知的图像是一组阶高为1的平行于轴的平行线段,这组平行线段呈阶梯形可见函数是一个不减(非单调) 的非周期的函数,其图像如下(a) (a)定理5 设,则是一有界、周期为1的非单调函数,其图像如(b) (b)以上是取整函数[]以及{}的一些基本性质,取整函数是非常重要的数学概念,它的定义域是连续的,值域却是离散的,取整函数关联着连续和离散两个方面,因而有其独特的性质和广泛的应用,在极限, 导数 ,积分 ,级数等方面都有应用,也是数学竞赛中的热点,在数学竞赛中主要考察的是学生解决有关取整函数的问题用到的多种数学思想方法[3],其中较为常见的有分类讨论(例如对区间进行划分)、命题转换、数形结合、凑整、估值等等。
5、取整函数[x]以及小数函数{x}在解题中的应用下面来讨论取整函数[]以及{}的应用及推广5.1、取整函数[x]一些基本性质的应用例题7 证明[]+[2]++[][(+1)]证 :左边=([]+[2]+ +[]+[] +[(-1) +[]) [(+1)]注:此题应用了性质例题8 从1到1000的整数中有多少个事11的倍数?有多少个是121的倍数?解:由于[1000/11]=90,而[1000/121]=8,所以从1到1000的整数中,11的倍数有90个,121的倍数有8个注:此题是定理3的应用,若>1,mN,则从1到的整数中,m的倍数有[/m]个5.2、数学竞赛中用多种方法解决取整函数下面是关于解决取整函数的多种数学方法的例题:例题9[4] 若实数使得,求解:等式左边共73项,且因都小于1,则每一项为或,注意到,故必有进一步有:,所以原式左边从第1项至第38 项其值为7,自第39项以后各项值为8即:注:此题采用了分类讨论法例题10[5] 求的值解:由题意得:对于任意的由于 注:本题采用了分组凑整的思想例题11对任意的,证明:证明:首先证明令,则当时,,于是,那么,当时,,即,那么。
所以命题成立,也就是:故: 又: 注:本例的证明采用了“两边夹”[6]法则若且,则,我们把这个结论叫做“两边夹”法则例题12,解方程解:令 ,则,带入原方程整理得:,由取整函数的定义有,解得:,则若,则;若,则注:本例中方程为[7]型的,通常运用取整函数的定义和性质并结合换元法求解例题13 解方程解:由取整函数的性质,得:,即,令,在同一坐标系中画出二者的图象:分析两者在区间内的图象,显然,当时, 而,方程不成立;当时, ;当时, ;当 时, 而,方程不成立综上所述,原方程的解是:注:本例为型方程首先由,求出的取值区间但此条件为原方程成立的充分但不必要条件,故还须利用和的图象进行分析才能得到正确结果例题14,解方程解:若,则,原方程不成立;若,则,原方程不成立;若,则,原方程不成立; 若,则原方程即为;解得:;若,则,原方程不成立;所以,原方程的解为:注:此题采用的是分区讨论法例题15 证明:若是大于2的质数,则被整除证明:由二项式定理知:对于任意的是一个整数,又因为, 于是有: ,其中是质数因为都能被质数整除,所以原命题成立注:本题采用的是构造法,所谓构造法就是通过建立结构或体系,构造对象或指出达到某种目的的方式和途径。
以上是解决取整函数的多种数学方法,不难看出取整函数为什么成为数学竞赛中的热点,关于取整函数的题型是多种多样的,而解决的方法也很多,在解决关于取整函数的题目的过程中可以很好的体现出学生对数学的综合运用,取整函数作为一个初等函数,它非常重要,它的应用也非常广,下面我们来对它进行推广,看看它在数学中在极限 导数 积分 级数的应用5.3、取整函数[x]在极限、积分、导数、级数中的应用例题例题16 (极限问题)注:,称A为函数当趋于时的极限,此题是含有取整函数的极限问题例题17设,求与解 当时,当时,因此,有,所以在内连续又,所以在整数点k也连续当时,当时,类似地有注:设函数在点的某。