带式运输机的减速传动装置设计毕业设计

上传人:cl****1 文档编号:474224166 上传时间:2023-11-21 格式:DOC 页数:30 大小:1.23MB
返回 下载 相关 举报
带式运输机的减速传动装置设计毕业设计_第1页
第1页 / 共30页
带式运输机的减速传动装置设计毕业设计_第2页
第2页 / 共30页
带式运输机的减速传动装置设计毕业设计_第3页
第3页 / 共30页
带式运输机的减速传动装置设计毕业设计_第4页
第4页 / 共30页
带式运输机的减速传动装置设计毕业设计_第5页
第5页 / 共30页
点击查看更多>>
资源描述

《带式运输机的减速传动装置设计毕业设计》由会员分享,可在线阅读,更多相关《带式运输机的减速传动装置设计毕业设计(30页珍藏版)》请在金锄头文库上搜索。

1、 目 录摘要-2第一部分 传动方案的拟定-3第二部分 电动机的选择及传动装置的运动和动力参数计算-3第三部分 传动零件的设计计算-5 第四部分 主要尺寸及数据-12第五部分 润滑油及润滑方式的选择-13第六部分 轴的设计及校核-13结论-29参考文献-29摘 要当今世界各国齿轮和齿轮减速器向六高、二低、二化方向发展的总趋势,即高承载能力、高齿面硬度、高精度、高速度、高可靠性、高传动效率;低噪声、低成本;标准化和多样化。计算机技术、信息技术和自动化技术的广泛应用,齿轮减速器技术的发展将跃上新的台阶。国内以往的设计大都是基于经验的,基于经验的设计在以往的产品开发中取得了巨大的成功,但也存在一些不足

2、,一般只能解决行不行的问题,很难解决优不优的问题,并且经验的积累需要时间,有时也不可靠。采用有限元法之后,人们把实际结构划分(或离散)为一个个的“单元”,而单元与单元之间仅在“节点”处相连,这样就把由无限个相互连接的质点所组成的真实结构,用有限个节点相连的离散单元组合体的有限元网络计算机模型所近似代替。这样的计算模型显然比较接近真实结构。目前应用最广的有限元分析软件之一ANSYS软件融结构流体、电场、磁场、声场、热传导等领域静力学、动力学及边界耦合问题分析于一体的大型通用有限元分析软件,它能与多数CAD软件及机械仿真软件接口实现数据共享和交换。利用限元分析元件ANSYS对圆柱齿轮减速器的关键零

3、部件齿轮、轴等进行了有限元静力学和动力学分析,校核了其各项性能,为优化设计提供了理论依据。本次设计的题目是带式运输机的减速传动装置设计。根据题目要求和机械设计的特点作者做了以下几个方面的工作:决定传动装置的总体设计方案,选择电动机,计算传动装置的运动和动力参数,传动零件以及轴的设计计算,轴承、联接件、润滑密封和联轴器的选择及校验计算, 机体结构及其附件的设计和参数的确定,绘制装配图及零件图,编写计算说明书。关键词:减速器 机械设计 带式运输机计算及说明结果 第一部分 传动方案的拟定 一、传动方案1、 电动机直接由联轴器与减速器连接2、 减速器用二级展开式圆柱直齿轮减速器3、 方案简图如下:原始

4、数据如下表1-1:带拉力F(N)带速度V(m/s)滚筒直径D(mm)22001.1240第二部分 电动机的选择及传动装置的运动和动力参数计算 一、电动机的选择1、选择电动机的类型 按工作要求和条件,选用三相笼型异步电动机,封闭式结构,电压380V,Y型。 2、选择电动机的容量 :电动机至运输带的传动总效率。 分别是联轴器、轴承、齿轮、卷筒的传动效率分别取=0.99、=0.97、=0.97、=0.99有电动机至运输带的传动总效率为: 所以 3、 确定电动机的转速 卷筒轴的工作转速为 按指导书表一,查二级圆柱齿轮减速器的传动比 ,故电动机转速的可选范围,符合这一范围的同步转速有1000、1500r

5、/min.根据容量和转速,有指导书查出 取型号:Y100L2-4 二、确定传动装置的总传动比和分配传动比 电动机型号为Y100L2-6 1、 总传动比 2、 分配传动装置传动比 有公式 求得、三、计算传动装置的运动和动力参数 1、各轴转速 轴一 轴二 轴三 2、 各轴输入功率轴一 轴二 轴三 卷筒轴 3、 各轴输入转矩电动机输出转矩 轴一 轴二 轴三 卷筒轴输入转矩 1-3轴的输出转矩则分别为各轴的输入转矩乘轴承效率0.98 运动和动力参数计算结果整理与下 轴名效率P(KW)转矩T(NM)转速n(r/min)输入输出输入输出电机轴2.7218.171430轴12.722.6918.1717.9

6、61430轴22.692.5817.9682.36299.16轴32.582.4882.36270.7787.47卷筒轴2.482.43270.77265.3187.47第三部分 传动零件的设计计算一、 高速级减速齿轮设计1选定齿轮类型、精度等级、材料及齿数1)选用直齿圆柱齿轮传动2)运输机为一般工作机器,速度不高,有机设书表10-8知,选用7级精度(GB10095-88)3)材料选择:有机设书表10-1选择小齿轮材料为45钢(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为240HBS。二者材料硬度差为40HBS。 4)、选小齿轮齿数为,大齿轮齿数 2按齿面接触强度设计 由设计

7、计算公式(10-9a)进行试算,即 (1)确定公式内的各计算数值1) 试选载荷系数 2) 计算小齿轮传递的转矩 3) 由表10-7选取齿宽系数 4) 有表10-6查得材料的弹性影响系数 5) 由图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限,大齿轮的接触疲劳强度极限;6) 由式10-13计算应力循环次数 7) 由图10-19查得结束疲劳寿命系数 8) 计算接触疲劳许用应力 取失效概率为1%,安全系数S=1,由式(10-12)得 (2)计算 1)试算小齿轮分度圆直径,代入中较小的值=31.80mm 2)计算圆周速度v 3)计算尺宽b: 4)计算尺宽与齿高比b/h 模数 齿高 5)计算载荷系

8、数 根据,七级精度,由图10-8(机设书)查得动载系数直齿轮,假设。由表10-3查得由表10-2查得使用系数有表10-4查得七级精度,小齿轮相对支承非对称布置式 由b/h=9.16,查图10-13得,故载荷系数 6)按实际的载荷系数校正所算得的分度圆直径,由式(10-10a)得 7)计算模数m 3按齿根弯曲强度设计 由式(10-5)得弯曲强度的设计公式为 (1) 确定公式内的各计算数值1) 由图10-20c查得小齿轮的弯曲疲劳强度极限,大齿轮的弯曲疲劳强度极限;2) 由图10-18查得弯曲疲劳寿命系数1,;3) 计算弯曲疲劳许用应力 取弯曲疲劳安全系数S=1.4,由式(10-12)得 4)计算

9、载荷系数K 5)查取齿形系数 由表10-5查得 ; 6)查取应力校正系数由表10-5查得 ; 7)计算大、小齿轮的并加以比较 0.01483所以大齿轮的数值大。(2) 设计计算: 对比计算结果,由齿面接触疲劳强度计算的模数m大于由齿根弯曲疲劳强度计算的模数,由于齿轮模数m的大小主要取决于弯曲强度所决定的承载能力,而齿面接触疲劳强度所决定的承载能力,仅与齿轮直径(即模数与齿数的乘积)有关,可取由弯曲强度算得的模数1.16并就近圆整为标准值m=1.5mm,按接触强度算得分度圆直径,算出小齿轮齿数z1=24;大齿轮齿数 这样设计出的齿轮传动,既满足了齿面接触疲劳强度,又满足了齿根弯曲疲劳强度,并做到

10、结构紧凑,避免浪费。 4 几何尺寸计算 (1)计算分度圆直径 (2)计算中心距 mm(3) 计算齿轮宽度 取; 5 验算 按圆整后的中心距修正螺旋角 =与误差很小,即值改变不多,故等不必修改。二、 低速级减速齿轮设计1选定齿轮类型、精度等级、材料及齿数1)选用直齿圆柱齿轮传动2)运输机为一般工作机器,速度不高,有机设书表10-8知,选用7级精度(GB10095-88)3)材料选择:有机设书表10-1选择小齿轮材料为45钢(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为240HBS。二者材料硬度差为40HBS。 4) 选小齿轮齿数为,大齿轮齿数取 2按齿面接触强度设计 由设计计算

11、公式(10-9a)进行试算,即 (1)确定公式内的各计算数值1)试选载荷系数 2)计算小齿轮传递的转矩 3)由表10-7选取齿宽系数 4) 有表10-6查得材料的弹性影响系数 5) 由图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限,大齿轮的接触疲劳强度极限;6) 由式10-13计算应力循环次数 7) 由图10-19查得结束疲劳寿命系数 8) 计算接触疲劳许用应力 取失效概率为1%,安全系数S=1,由式(10-12)得 (2)计算 1)试算小齿轮分度圆直径,代入中较小的值 =54.477mm 2)计算圆周速度v 3)计算尺宽b 4)计算尺宽与齿高比b/h 模数 齿高 5)计算载荷系数 根据,七级精度,由图10-8(机设书)查得动载系数直齿轮,假设。由表10-3查得由表10-2查得使用系数有表10-4查得七级精度,小齿轮相对支承非对称布置式 由b/h=10.67,查图10-13得,故载荷系数 6)按实际的载荷系数校正所算得的分度圆直径,由式(10-10a)得 7)计算模数m 3按齿根弯曲强度设计 由式(10-5)得弯曲强度的设计公式为 (1)确定公式内的各计算数值1)由图10-20c查得小齿轮的弯曲疲劳强度极限,大齿轮的弯曲疲劳强度极限

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 大杂烩/其它

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号