高等数学第三章微分中值定理与导数的应用

上传人:汽*** 文档编号:474108167 上传时间:2022-07-28 格式:DOC 页数:26 大小:906.51KB
返回 下载 相关 举报
高等数学第三章微分中值定理与导数的应用_第1页
第1页 / 共26页
高等数学第三章微分中值定理与导数的应用_第2页
第2页 / 共26页
高等数学第三章微分中值定理与导数的应用_第3页
第3页 / 共26页
高等数学第三章微分中值定理与导数的应用_第4页
第4页 / 共26页
高等数学第三章微分中值定理与导数的应用_第5页
第5页 / 共26页
点击查看更多>>
资源描述

《高等数学第三章微分中值定理与导数的应用》由会员分享,可在线阅读,更多相关《高等数学第三章微分中值定理与导数的应用(26页珍藏版)》请在金锄头文库上搜索。

1、 第三章 微分中值定理与导数的应用教学目的:1、 理解并会用罗尔定理、拉格朗日中值定理,了解柯西中值定理和泰勒中值定理。2、 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用。3、 会用二阶导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。4、 掌握用洛必达法则求未定式极限的方法。5、 知道曲率和曲率半径的概念,会计算曲率和曲率半径。6、 知道方程近似解的二分法及切线性。教学重点: 1、罗尔定理、拉格朗日中值定理;2、函数的极值 ,判断函数的单调性和求函数极值的方法;3、函数图形的凹凸性;4、洛必达

2、法则。教学难点: 1、罗尔定理、拉格朗日中值定理的应用; 2、极值的判断方法; 3、图形的凹凸性及函数的图形描绘; 4、洛必达法则的灵活运用。3. 1 微分中值定理 一、罗尔定理 费马引理 设函数f(x)在点x0的某邻域U(x0)内有定义, 并且在x0处可导, 如果对任意xU(x0), 有 f(x)f(x0) (或f(x)f(x0), 那么f (x0)=0. 罗尔定理 如果函数y=f(x)在闭区间a, b上连续, 在开区间(a, b)内可导, 且有f(a)=f(b), 那么在(a, b)内至少在一点x , 使得f (x)=0. 简要证明: (1)如果f(x)是常函数, 则f (x)0, 定理的

3、结论显然成立. (2)如果f(x)不是常函数, 则f(x)在(a, b)内至少有一个最大值点或最小值点, 不妨设有一最大值点x(a, b). 于是, , 所以f (x)=0. 罗尔定理的几何意义: 二、拉格朗日中值定理 拉格朗日中值定理 如果函数f(x)在闭区间a, b上连续, 在开区间(a, b)内可导, 那么在(a, b)内至少有一点x(axb), 使得等式f(b)-f(a)=f (x)(b-a)成立. 拉格朗日中值定理的几何意义: f (x)=, 定理的证明: 引进辅函数令 j(x)=f(x)-f(a)-(x-a). 容易验证函数f(x)适合罗尔定理的条件: j(a)=j(b)=0, j

4、(x)在闭区间a, b 上连续在开区间(a, b)内可导, 且j (x)=f (x)-. 根据罗尔定理, 可知在开区间(a, b)内至少有一点x, 使j (x)=0, 即f (x)-=0. 由此得 = f (x) , 即 f(b)-f(a)=f (x)(b-a). 定理证毕. f(b)-f(a)=f (x)(b-a)叫做拉格朗日中值公式. 这个公式对于b0或Dx0)或x+Dx, x (Dx0)应用拉格朗日中值公式, 得f(x+Dx)-f(x)=f (x+qDx)Dx (0q1). 如果记f(x)为y, 则上式又可写为Dy=f (x+qDx)Dx (0q1). 试与微分d y=f (x)Dx 比

5、较: d y =f (x)Dx是函数增量Dy 的近似表达式, 而f (x+qDx)Dx是函数增量Dy 的精确表达式. 作为拉格朗日中值定理的应用, 我们证明如下定理: 定理 如果函数f(x)在区间I上的导数恒为零, 那么f(x)在区间I上是一个常数. 证 在区间I上任取两点x1, x2(x1x2), 应用拉格朗日中值定理, 就得f(x2)-f(x1)=f (x)(x2 - x1) (x1x0时, . 证 设f(x)=ln(1+x), 显然f(x)在区间0, x上满足拉格朗日中值定理的条件, 根据定理, 就有 f(x)-f(0)=f (x)(x-0), 0xx。由于f(0)=0, , 因此上式即

6、为 .又由0xx, 有 . 三、柯西中值定理 设曲线弧C由参数方程 (axb)表示, 其中x为参数. 如果曲线C上除端点外处处具有不垂直于横轴的切线, 那么在曲线C上必有一点x=x , 使曲线上该点的切线平行于连结曲线端点的弦AB, 曲线C上点x=x 处的切线的斜率为 , 弦AB的斜率为 . 于是 . 柯西中值定理 如果函数f(x)及F(x)在闭区间a, b上连续, 在开区间(a, b)内可导, 且F (x)在(a, b)内的每一点处均不为零, 那么在(a, b)内至少有一点x , 使等式 .成立. 显然, 如果取F(x)=x, 那么F(b)-F(a)=b-a, F (x)=1, 因而柯西中值

7、公式就可以写成: f(b)-f(a)=f (x)(b-a) (axb), 这样就变成了拉格朗日中值公式了. 3. 2 洛必达法则一 型和型未定式的解法:洛必达法则定义:若当(或)时,函数和都趋于零(或无穷大),则极限可能存在、也可能不存在,通常称为型和型未定式. 例如 , (型); , (型).定理1:设 (1)当时, 函数和都趋于零;(2)在点的某去心邻域内,和都存在且;(3) 存在(或无穷大),则定义:这种在一定条件下通过分子分母分别求导再求极限来确定未定式的值的 方法称为洛必达法则证明: 定义辅助函数, 在内任取一点, 在以和为端点的区间上函数和满足柯西中值定理的条件, 则有 , (在与

8、之间)当时,有, 所以当, 有 故. 证毕说明: 1.如果仍属于型, 且和满足洛必达法则的条件,可继续使用洛必达法则, 即; 2.当时, 该法则仍然成立, 有; 3.对(或)时的未定式,也有相应的洛必达法则; 4. 洛必达法则是充分条件; 5. 如果数列极限也属于未定式的极限问题,需先将其转换为函数极限,然后使用洛必达法则,从而求出数列极限.例1 求, (型)解 原式= 例2 求, (型)解 原式= = 例3 求 , (型)解 原式=1例4 求 , (型).解 原式= = =1例5 求 , (型)解 原式= = = = 注意:洛必达法则是求未定式的一种有效方法,但与其它求极限方法结合使用,效果

9、更好.例6 求解 原式= = =二型未定式的求法关键: 将其它类型未定式化为洛必达法则可解决的类型型和型.1型未定式的求法步骤:或例7 求 型解 原式=步骤:例8 求 型解 原式=步骤: 例9 求 型解 原式=例10 求 型解 原式=例11 求 型解 由于而 所以 原式=注意:洛必达法则的使用条件例12 求解 原式=极限不存在 (洛必达法条件不满足的情况)正确解法为 原式=例13 求解 设,则 因为=从而 原式=3. 3 泰勒公式对于一些较复杂的函数, 为了便于研究, 往往希望用一些简单的函数来近似表达. 由于用多项式表示的函数, 只要对自变量进行有限次加、减、乘三种运算, 便能求出它的函数值

10、, 因此我们经常用多项式来近似表达函数. 在微分的应用中已经知道, 当|x|很小时, 有如下的近似等式: e x 1+x, ln(1+x) x. 这些都是用一次多项式来近似表达函数的例子. 但是这种近似表达式还存在着不足之处: 首先是精确度不高, 这所产生的误差仅是关于x的高阶无穷小; 其次是用它来作近似计算时, 不能具体估算出误差大小. 因此, 对于精确度要求较高且需要估计误差时候, 就必须用高次多项式来近似表达函数, 同时给出误差公式. 设函数f(x)在含有x0的开区间内具有直到(n+1)阶导数, 现在我们希望做的是: 找出一个关于(x-x0 )的n次多项式 p n(x)=a 0+a 1(

11、x-x0 )+ a 2(x-x0 ) 2+ + a n (x-x0 ) n来近似表达f(x), 要求p n(x)与f(x)之差是比(x-x0 ) n高阶的无穷小, 并给出误差| f (x)- p n (x)|的具体表达式. 我们自然希望p n(x)与f(x)在x0 的各阶导数(直到(n+1)阶导数)相等, 这样就有 p n(x)=a 0+a 1(x-x0 )+ a 2(x-x0 ) 2+ + a n (x-x0 ) n , p n(x)= a 1+2 a 2(x-x0 ) + +na n (x-x0 ) n-1 , p n(x)= 2 a 2 + 32a 3(x-x0 ) + + n (n-1

12、)a n (x-x0 ) n-2 , p n(x)= 3!a 3 +432a 4(x-x0 ) + + n (n-1)(n-2)a n (x-x0 ) n-3 , , p n (n)(x)=n! a n . 于是 pn (x0 )=a 0 , p n (x0 )= a 1 , p n (x0 )= 2! a 2 , p n (x)= 3!a 3 , , p n (n)(x)=n! a n. 按要求有 f(x0)=p n(x0) =a0, f (x0)= p n (x0)= a 1 , f (x0)= p n (x0)= 2! a 2 , f (x0)= p n (x0)= 3!a 3 , f (n)(x0)= p n (n)(x0)=n! a n . 从而有 a 0=f(x0 ), a 1=f (x0 ), , , , . (k=0, 1, 2, , n). 于是就有 pn(x)= f(x0)+ f (x0) (x-x0)(x-x0) 2 + (x-x0) n . 泰勒中值定理 如果函数f(x)在含有x0的某个开区间(a, b)内具有直到(n+1)的阶导数, 则当x 在(a, b)内时, f(x)可以表示为(

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 中学教育 > 试题/考题 > 初中试题/考题

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号