毕业设计基于STC89C52单片机的可调式电子日历与时钟设计

上传人:s9****2 文档编号:474101259 上传时间:2023-03-31 格式:DOC 页数:27 大小:1.76MB
返回 下载 相关 举报
毕业设计基于STC89C52单片机的可调式电子日历与时钟设计_第1页
第1页 / 共27页
毕业设计基于STC89C52单片机的可调式电子日历与时钟设计_第2页
第2页 / 共27页
毕业设计基于STC89C52单片机的可调式电子日历与时钟设计_第3页
第3页 / 共27页
毕业设计基于STC89C52单片机的可调式电子日历与时钟设计_第4页
第4页 / 共27页
毕业设计基于STC89C52单片机的可调式电子日历与时钟设计_第5页
第5页 / 共27页
点击查看更多>>
资源描述

《毕业设计基于STC89C52单片机的可调式电子日历与时钟设计》由会员分享,可在线阅读,更多相关《毕业设计基于STC89C52单片机的可调式电子日历与时钟设计(27页珍藏版)》请在金锄头文库上搜索。

1、目 录1概述11.1背景与意义11.2设计内容12设计要求与方案论证12.1 设计要求:12.2 系统基本方案选择和论证12.2.1单片机芯片的选择方案和论证:12.2.2 显示模块选择方案和论证:12.2.3时钟芯片的选择方案和论证:22.3 电路设计最终方案决定23.系统的硬件设计与实现23.1 电路设计框图23.2 系统硬件概述33.3 主要单元电路的设计33.3.1STC89C52单片机管脚说明33.3.2时钟电路模块的设计53.3.3 电路原理及说明64系统的软件设计84.1程序流程框图84.2时间调整程序流程图94.3 计算阳历程序流程图105系统调试与仿真105.1 软件调试问题

2、分析115.2 Proteus 仿真115.3硬件测试115.4软件测试125.5测试结果分析与结论125.5.1 测试结果分析125.5.2 测试结论125.5.3实物图125.5.4调试结果146电路板的制作与检查167作品总结17参考文献17附录18附录一:基于52单片机可调式电子日历与时钟原理图18附录二:基于52单片机可调式电子日历与时钟PCB图19附录三:proteus仿真图19附录四:基于52单片机可调式电子日历与时钟设计C语言程序清单19附录五:基于52单片机可调式电子日历与时钟设计器件目录表24基于52单片机可调式电子日历与时钟系统设计1概述1.1背景与意义 此可调式电子日历

3、与时钟小巧便于携带,界面清爽,一目了然,方便的使您知晓当前时间,并可对时间做出修改,实在是居家旅行日常生活之必备用品!1.2设计内容 在现今的可调式电子日历与时钟具有性能稳定、精确度高、成本低、易于产品化,以及方便、实用等特点。本次设计可分为两部分:硬件系统、软件系统。利用LED显示器能显示出当前的时间包括年月日时分秒的电子日历装置。由于LED显示器只有六个数码管所以同时显示年月日和时分秒。通过键盘的按键来改变的年月日时分秒,利用单片机将RC复位电路、动态显示电路、电源电路、去抖电路等正确的连接在一起,并通过单片机的编程来实现本次设计任务中的要求。2设计要求与方案论证2.1 设计要求:()基本

4、要求 具有年、月、日、星期、时、分、秒等功能; 时间与阴、阳历能够自动关联; 具有温度计功能; 具备年、月、日、星期、时、分、秒校准功能;2.2 系统基本方案选择和论证2.2.1单片机芯片的选择方案和论证:根据设计内容,提出了如下两种方案:方案一: 采用STC89C52芯片作为硬件核心,采用Flash ROM,内部具有4KB ROM 存储空间,能于3V的超低压工作,而且与MCS-52系列单片机完全兼容,但是运用于电路设计中时由于不具备ISP在线编程技术, 当在对电路进行调试时,由于程序的错误修改或对程序的新增功能需要烧入程序时,对芯片的多次拔插会对芯片造成一定的损坏。方案二: 采用STC89C

5、52,片内ROM全都采用Flash ROM;能以3V的超底压工作;同时也与MCS-52系列单片机完全该芯片内部存储器为8KB ROM 存储空间,同样具有89C52的功能,且具有在线编程可擦除技术,当在对电路进行调试时,由于程序的错误修改或对程序的新增功能需要烧入程序时,不需要对芯片多次拔插,所以不会对芯片造成损坏。所以选择采用STC89C52作为主控制系统.2.2.2 显示模块选择方案和论证:根据设计内容,提出了如下三种方案:方案一: 采用LED液晶显示屏,液晶显示屏的显示功能强大,可显示大量文字,图形,显示多样,清晰可见,但是价格昂贵,需要的接口线多,所以在此设计中不采用LED液晶显示屏.方

6、案二: 采用点阵式数码管显示,点阵式数码管是由八行八列的发光二极管组成,对于显示文字比较适合,如采用在显示数字显得太浪费,且价格也相对较高,所以也不用此种作为显示.方案三:采用LED数码管动态扫描,LED数码管价格适中,对于显示数字最合适,而且采用动态扫描法与单片机连接时,占用的单片机口线少。所以采用了LED数码管作为显示。2.2.3时钟芯片的选择方案和论证:根据设计内容,提出了如下两种方案:方案一: 直接采用单片机定时计数器提供秒信号,使用程序实现年、月、日、星期、时、分、秒计数。采用此种方案虽然减少芯片的使用,节约成本,但是,实现的时间误差较大。所以不采用此方案。方案二: 采用DS1302

7、时钟芯片实现时钟,DS1302芯片是一种高性能的时钟芯片,可自动对秒、分、时、日、周、月、年以及闰年补偿的年进行计数,而且精度高,位的RAM做为数据暂存区,工作电压2.5V5.5V范围内,2.5V时耗电小于300nA. 2.3 电路设计最终方案决定综上各方案所述,对此次作品的方案选定: 采用STC89C52作为主控制系统; DS1302提供时钟;LED数码管动态扫描作为显示。3.系统的硬件设计与实现STC89C52主控制模 块3.1 电路设计框图键盘模块LED数码管动态扫描显示模块 DS1302时钟模块3.2 系统硬件概述本电路是由STC89C52单片机为控制核心,具有在线编程功能,低功耗,能

8、在3V超低压工作;时钟电路由DS1302提供,它是一种高性能、低功耗、带RAM的实时时钟电路,它可以对年、月、日、周日、时、分、秒进行计时,具有闰年补偿功能,工作电压为2.5V5.5V。采用三线接口与CPU进行同步通信,并可采用突发方式一次传送多个字节的时钟信号或RAM数据。DS1302内部有一个31*8的用于临时性存放数据的RAM寄存器。可产生年、月、日、周日、时、分、秒,具有使用寿命长,精度高和低功耗等特点,同时具有掉电自动保存功能;温度的采集由DS18B20构成;3.3 主要单元电路的设计3.3.1STC89C52单片机管脚说明图3-3-1 AT89S52单片机管脚图 ATMEL公司的

9、STC89C52是一种高效微控制器。采用40引脚双列直插封装形式。 STC89C52单片机是高性能单片机,因为受引脚数目的限制,所以有不少引脚具有第二功能。VCC:供电电压。GND:接地。P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FLASH编程时,P0 口作为原码输入口,当FLASH进行校验时,P0输出原码,此时P0外部必须被拉高。P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上

10、拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。 P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写1时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址1时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八

11、位地址信号和控制信号。P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入1后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流。P3口也可作为AT89S51的一些特殊功能口,如下表所示:P3口管脚 备选功能P3.0 RXD(串行输入口)P3.1 TXD(串行输出口)P3.2 INT0(外部中断0)P3.3 INT1(外部中断1)P3.4 T0(记时器0外部输入)P3.5 T1(记时器1外部输入)P3.6 (外部数据存储器写选通)P3.7 (外部数据存储器读选通)P3口同时为闪烁编程和编程校验接收一些控制信号。ALE

12、/:当访问外部存储器时,地址锁存允许端的输出电平用于锁存地址的地址字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出可在SFR8EH地址上置0。此时, ALE只有在执行MOVX,MOVC指令是ALE才起作用。PSEN:外部程序存储器的选通信号端。在由外部程序存储器取指期间,每个机器周期两次PSEN有效。但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。/VP:当保持低电平时,则在

13、此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。注意加密方式1时,将内部锁定为RESET;当端保持高电平时,此间内部程序存储器。在FLASH编程期间,此引脚也用于施加12V编程电源。XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。XTAL2:反向振荡器的输出,如采用外部时钟源驱动器件,应不接。 STC89C52单片机为40引脚双列直插芯片,有四个I/O口P0,P1,P2,P3, MCS-52单片机共有4个8位的I/O口(P0、P1、P2、P3),每一条I/O线都能独立地作输出或输入。单片机的最小系统如下图所示,18引脚和19引脚接时钟电路,XTAL1接外部晶

14、振和微调电容的一端,在片内它是振荡器倒相放大器的输入,XTAL2接外部晶振和微调电容的另一端,在片内它是振荡器倒相放大器的输出.第9引脚为复位输入端,接上电容,电阻及开关后够上电复位电路,20引脚为接地端,40引脚为电源端. 3.3.2时钟电路模块的设计 图2-3-3示出DS1302的引脚排列,其中Vcc1为后备电源,Vcc2为主电源。在主电源关闭的情况下,也能保持时钟的连续运行。DS1302由Vcc1或Vcc2两者中的较大者供电。当Vcc2大于Vcc1+0.2V时,Vcc2给DS1302供电。当Vcc2小于Vcc1时,DS1302由Vcc1供电。X1和X2是振荡源,外接32.768KHz晶振

15、。RST是复位/片选线,通过把RST输入驱动置高电平来启动所有的数据传送。RST输入有两种功能:首先,RST接通控制逻辑,允许地址/命令序列送入移位寄存器;其次,RST提供终止单字节或多字节数据的传送手段。当RST为高电平时,所有的数据传送被初始化,允许对DS1302进行操作。如果在传送过程中RSTS置为低电平,则会终止此次数据传送,I/O引脚变为高阻态。上电动行时,在Vcc大于等于2.5V之前,RST必须保持低电平。中有在SCLK 为低电平时,才能将RST置为高电平,I/O为串行数据输入端(双向)。SCLK始终是输入端。图3-2-2 DS1302的引脚图3.3.3 电路原理及说明(1) 时钟芯片DS1302的工作原理: DS1302在每次进行读、写程序前都必须初始化,先把SCLK端置 “0”,接着把RST端置“1”,最后才给予SCLK脉冲;读/写时序如下图4所示。图5为DS1302的控制字,此控制字的位7必须置1,若为0则不能把对DS1302进行读写数据。

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 大杂烩/其它

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号