植物系统获得抗病性(sar)及其信号转导

上传人:工**** 文档编号:470853283 上传时间:2024-02-16 格式:DOC 页数:12 大小:299KB
返回 下载 相关 举报
植物系统获得抗病性(sar)及其信号转导_第1页
第1页 / 共12页
植物系统获得抗病性(sar)及其信号转导_第2页
第2页 / 共12页
植物系统获得抗病性(sar)及其信号转导_第3页
第3页 / 共12页
植物系统获得抗病性(sar)及其信号转导_第4页
第4页 / 共12页
植物系统获得抗病性(sar)及其信号转导_第5页
第5页 / 共12页
点击查看更多>>
资源描述

《植物系统获得抗病性(sar)及其信号转导》由会员分享,可在线阅读,更多相关《植物系统获得抗病性(sar)及其信号转导(12页珍藏版)》请在金锄头文库上搜索。

1、植物系统获得抗病性(SAR)及其信号转导浙江大学计算机学院 陈天洲摘要本文主要阐述了植物系统性活的抗性(SAR)中的信号分子及信号传导途径的研究进展。主要介绍了水杨酸(salicylic acid, SA)与茉莉酸(jasmonate, JA)诱导的信号途径及其在SAR中的作用。并对今后这一领域的研究进行了展望。关键词: SAR; 水杨酸; 茉莉酸;信号转导1 植物系统性获得抗性植物对病原菌感染的反应最初表现为感染部位细胞迅速而局部性的死亡,称过敏反应(hypersensiytive response, 简称HR)。HR是植物细胞的一种程序性死亡(programmed cell death,

2、PCD)1。通过感染部位的细胞的主动死亡, 致使局部组织脱水,从而切断病原菌的营养供给,使病原菌限制在局部感染区不再扩展。一般而言,过敏反应定义为宿主细胞在病原菌攻击后24h内的局部快速坏死反应。与此局部反应相关,过几天到1周时间,被感染植物产生新的抗性,并对病原菌的再次感染甚至对其它病原细菌、真菌、病毒和线虫的感染, 均有很强的抗性,此抗性可扩展到整个植株,通常称为系统性获得抗性(systemic acquired resistance, SAR)2。SAR的显著标志是:对病原菌有广谱抗性以及病程相关(pathogenesis related, PR)蛋白的表达。PRs是指在病理和病理相关环

3、境(环境胁迫,如病原侵染和某些化学制剂的应用)下被诱导产生的蛋白3。SAR是一种植物主动防御机制,从发生过敏反应到植物系统获得抗性的产生,需要一系列信号的转导。系统获得抗性是通过植物抗病基因(R)与病原微生物无毒基因(avr)的相互识别和相互作用来实现的4。早年对植物与病原菌相互作用的遗传研究表明, R基因编码具有高度选择性的受体来感知病原菌, 激活这些受体会打开信号途径,引起寄主的防卫反应5。一种植物对某一种病原物的侵染会发生哪种反应是由植物与病原物的亲和性程度决定的。如果植物受到不亲和的病原物的侵染就表现为免疫和抗病, 而受到亲和的病原物的侵染时则表现为感病。植物与病原物不同程度的亲和能力

4、是这两类生物之间经过长期协同进化形成的。但是对于植物在最初感知病原菌侵袭和最终引起抗病反应之间, 仍有许多具体环节不清楚。近些年来, 人们以模式植物拟南芥为材料, 在植物系统获得抗性及其信号转导方面做了大量的工作, 已分离、鉴定出许多涉及植物抗病信号转导系统的突变体, 并且克隆了相应的基因, 对植物抗病信号转导途径逐渐有了比较清晰的认识。2 诱导SAR的内源信号分子SAR外源诱导物可以是真菌、细菌、病毒及各种激发子(elici信号分子或电信号), 在低浓度下这些诱导信号即可通过诱导某些植物内源信号分子的产生而激活抗性机制。作为SAR中的信号分子必须遵循以下原则: 由植物自身合成, 随着病原物或

5、害虫的侵害而系统增加, 在植物体内运动, 诱导有关防卫蛋白和植物化合物, 并加强对病原物或害虫的抗性6。目前研究鉴定的,大概有水杨酸、茉莉酸及其衍生物以及其他一些物质。2.1水杨酸是SAR 信号转导途径的重要信号分子水杨酸(salicylic acid, SA)是一种小分子酚类物质,它是许多R基因特异的植物系统性抗病反应的一个重要信号分子, 涉及并参与植物的HR和SAR反应, 在植物的SAR信号转导中起着关键作用。SA作为SAR信号转导途径的一种内源信号分子,其作用已在烟草、黄瓜和拟南芥等植物中得到证实。在这些植物中,未感染病原物的植株体内SA含量很低。感染病原物后,在感染植株的韧皮部SA含量

6、急剧增加, 所增加的内源SA足以诱导PR蛋白的表达,并与SAR建立密切相关7。SA在植物防卫反应中的作用,另有来自植物转细菌nahG基因的证据。nahG 基因编码水杨酸羟化酶, 可转变SA为无生物活性的儿茶酚。转nahG基因的植物不能积累SA , 同时也不能诱导SAR8。此外, 异分支酸合成酶(isochorismate synthase , ICS)和异丙酮酸盐裂解酶(isochorismate pyruvate lyase, IPL)分别是细菌在转化分支酸为SA两步反应中的2种酶。转ICS基因和IPL基因的烟草可持续合成SA(constitutive SA biosynthesis, CS

7、A), 其体内SA和水杨酸葡糖苷的量比对照提高了5001000倍。CSA植物持续表达PR蛋白,还增强了植物对病毒和真菌的抗性9。通过克隆和功能分析拟南芥防卫相关基因(SID2),证实异分支酸合成酶是植物防卫反应中SA合成所必需的10。大量证据表明,SA是植物SAR信号转导途径一个必要的内源信号。2.2茉莉酸(jasmonate,JA)、茉莉酸甲酯(MeJA)和乙烯 JA和MeJA是植物自身生成的两种环戊烷类化合物。JA由亚麻酸通过脂氧合酶(LOX)介导的加氧过程形成的,LOX是该合成途径的关键酶和限速酶。在植物中, JA能以液体和气体状态自由地运动, MeJA是JA挥发性的衍生物。Pennin

8、ckx等10研究发现,乙烯和茉莉酸在诱导拟南芥和烟草植株产生SAR过程中起着重要作用。拟南芥植株下部叶片接种A. brassicicola后,在接种叶片及非接种叶片内都积累防卫素,并且茉莉酸含量增高。外源应用茉莉酸甲酯可使植株积累防卫素并产生SAR,而不用茉莉酸甲酯处理的拟南芥突变株coil1接种后不积累防卫素。同样,外源应用乙烯可以诱导拟南芥植株积累防卫素,而不用乙烯处理的拟南芥突变株ein2接种后不积累防卫素,也不能表现SAR。2.3其他可能的信号分子此外,系统素,寡聚糖、脱落酸、多胺、有些脂肪酸也可刺激植物的某些生理生化反应, 也能起信号分子的作用,但研究还不够深入,在此不一一介绍。在阐

9、明SAR的信号转导问题上已积累了大量的工作,SA好象是这一过程的一种必要成份,目前大量的工作也是集中在SA上。3 SAR的信号转导大量实验证明,JAs、SA都可诱导和蛋白酶抑制物、营养贮存蛋白、病原相关蛋白(PRs)等蛋白的合成及其蛋白基因的表达11。在众多的PRs中,以烟草产生的PRs 研究最为详细,除了PR-1PR-5外又提出了PR-6PR-1112。PRs主要分布在细胞间隙和液泡内。一般来说,酸性PRs多分布在细胞间隙,碱性PRs多分布在液泡中。SA能诱导烟草酸性PR-1,PR-2H和PR-5基因的表达。JA-Me能诱导碱性PR-1基因的表达11。3.1SA信号感知和传导机制SA介导的植

10、物抗病反应是由一组复杂的植物保护机制被激活所至,因此,SA介导的保护反应要有充足的高水平SA,以及有效的SA信号感知及传导机制。不同的植物SAR诱导有两种不同的分子机制:植物存在有效的SA信号感知和传导机制,但缺乏高水平的内源SA,在病原菌感染后SA生物合成被诱导或激活,SA水平上升,激活信号传导途径;植物存在高水平的内源SA,但缺乏有效的SA信号感知及传导机制,病原菌可激活其SA信号感知和信号传导,诱导SAR建立12。3.1.1 SA作用受体SA 作为信号分子,首先要与受体结合,通过构型变化激活胞内有关酶的活性和蛋白质磷酸化,形成第二信使,信号放大,最终通过对特殊基因的调节激发植物防卫反应。

11、图1. SA充当CAT/APX的过氧化活性的单电子供体底物Chen等鉴定出一种烟草的可溶性SA结合蛋白(SAbinding protein ,SABP),该蛋白与过氧化氢酶高度同源,具有过氧化氢酶活性。试验表明,SA与SABP结合后阻碍了过氧化氢酶活性,提高H2O2水平,激活抗病相关基因表达。SA抑制过氧化氢酶活性是通过充当CAT/APX的过氧化活性的单电子供体底物来实现的(图1), 此过程中, CAT/APX的氧化态过氧化氢酶中间体(复合体) 转化为失活状态的部分还原型中间产物(复合体), 当SA供应一个电子到复合体, SA本身转变为自由基, 这种SA自由基能够启动脂质过氧化反应, 并能修饰

12、其他大分子12。所以, SA可能是通过阻断过氧化物酶的活性来提高植物对病害的抵抗力。或者说生物和非生物因子, 通过SA的形成与积累激活了超氧化物歧化酶的活性, 从而提高了植物的抗病性13。1997年Du和Klessing 在烟草细胞膜上新分离出一种SA结合蛋白抗坏血酸氧化酶(SABP2), 此受体与SA的亲合力比SABP与SA的亲合力大150倍, 因其与SA亲合力高, 所以在距离被染部位较远的组织中,也可有效结合SA。 推断SABP2更可能在SA的信号传导中起作用, 也可能在SA运输和代谢中起作用14。叶绿体的SABP3已得到纯化,其基因已克隆。可能具有抗氧化剂的功能14。上述研究报道表明,S

13、AR可能通过不同的传导途径来诱导相同的生理效应。3.1.2 SA信号的传导及抗病基因的表达利用SA标记的体内研究表明,感染烟草花叶病毒(tabacco mosaic virus,TMV)的烟草叶片中产生的SA ,被转运到了植物全身,在未感染部分也有较多积累15。因此推断SA可能是从感染部位传导到植物其它部位并激发SAR反应的信号。然而,也有研究表明, SA不能进行长距离的信号传导16。Ryals等将野生型Xanthi-NC 烟草和转NahG基因烟草嫁接。当NahG砧木的叶片接种TMV时,Xanthi-NC接穗的叶片表现SAR反应, 而当Xanthi-NC砧木的叶片接种TMV时, NahG接穗上

14、则不发生SAR, 说明SA是一种非长距离移动信号。大量实验结果说明, SA对产生SAR是必需的, 但除了SA的其它信号也能诱导SAR。离体黄瓜叶片实验也表明, 初级系统信号不是SA , 但能诱导SA的积累16。可见, SA对于植物产生SAR是必需的, 但SA又不是诱导SAR的唯一条件, SAR的产生是SA与其他物质共同作用的结果。这种信号分子的本质还不清楚。在植物防卫反应中,依赖SA的信号转导途径受非诱导免疫基因(non-Expres-ser of PR genes/non-inducible immunity, NPR1/NIM1)的调节。拟南芥突变体npr1/nim1对诱导SAR的生物和化

15、学激活剂不敏感, 不能表达PR基因,同时表现出病害特征, 但其体内仍可积累与野生型水平相当的SA, 说明NPR1/NIM1位于SA积累的下游,PR基因表达的上游17。过量表达NPR1基因的转基因拟南芥对丁香假单胞菌( Pseudomonas syringae) 和寄生霜霉Peronospora parasitica)的侵染产生抗性, PR-1等PR蛋白的表达量也提高, 并且对植物没有可见的损害18。研究表明, NPR1定位于细胞核内,通过与转录因子TGA家族相互作用控制PR-1的表达19。NPR1蛋白突变不能支持SAR, 同时也破坏了与转录因子相互作用的能力19。所以, NPR1是SAR途径的

16、一个共同的正调节基因。此外,SA介导的信号系统中的一些组分和基因也已得到鉴定, 例如, 在烟草中发现了一种SA可诱导的482kDa蛋白激酶(SA inducible protein kinase , SIPK) , 它属于MAP (mitogen activated protein) 激酶家族20。植物受病原菌侵染后也能诱导SIPK产生, 推测SIPK可能是作用于SA下游的信号传导途径的一部分。对PR-1基因上游调节序列的大量研究发现, 拟南芥中存在一个SA可诱导的调节因子: 一段保守序列TGACG, 它是PR-1基因表达所必需的, TGA蛋白属于植物bZIP转录因子,它既可以结合到其下游PR-1启动子的TGACG序列上,也可以与其上游的NPR1结合, 从而为NPR1和PR 21基因表达

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 大杂烩/其它

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号