线性代数复习知识

上传人:ni****g 文档编号:470322472 上传时间:2023-09-27 格式:DOC 页数:7 大小:22.50KB
返回 下载 相关 举报
线性代数复习知识_第1页
第1页 / 共7页
线性代数复习知识_第2页
第2页 / 共7页
线性代数复习知识_第3页
第3页 / 共7页
线性代数复习知识_第4页
第4页 / 共7页
线性代数复习知识_第5页
第5页 / 共7页
点击查看更多>>
资源描述

《线性代数复习知识》由会员分享,可在线阅读,更多相关《线性代数复习知识(7页珍藏版)》请在金锄头文库上搜索。

1、线性代数知识点框架(一)线性代数的学习切入点:线性方程组。换言之,可以把线性代数看作是在研究线性方程组这一对象的过程中建立起来的学科。线性方程组的特点:方程是未知数的一次齐次式,方程组的数目s和未知数的个数n可以相似,也可以不同。有关线性方程组的解,有三个问题值得讨论:(1)、方程组与否有解,即解的存在性问题;(2)、方程组如何求解,有多少个解;(3)、方程组有不止一种解时,这些不同的解之间有无内在联系,即解的构造问题。高斯消元法,最基本和最直接的求解线性方程组的措施,其中波及到三种对方程的同解变换:(1)、把某个方程的k倍加到此外一种方程上去;(2)、互换某两个方程的位置;(3)、用某个常数

2、k乘以某个方程。我们把这三种变换统称为线性方程组的初等变换。任意的线性方程组都可以通过初等变换化为阶梯形方程组。由具体例子可看出,化为阶梯形方程组后,就可以依次解出每个未知数的值,从而求得方程组的解。对方程组的解起决定性作用的是未知数的系数及其相对位置,因此可以把方程组的所有系数及常数项按本来的位置提取出来,形成一张表,通过研究这张表,就可以判断解的状况。我们把这样一张由若干个数按某种方式构成的表称为矩阵。可以用矩阵的形式来表达一种线性方程组,这至少在书写和体现上都更加简洁。系数矩阵和增广矩阵。高斯消元法中对线性方程组的初等变换,就相应的是矩阵的初等行变换。阶梯形方程组,相应的是阶梯形矩阵。换

3、言之,任意的线性方程组,都可以通过对其增广矩阵做初等行变换化为阶梯形矩阵,求得解。阶梯形矩阵的特点:左下方的元素全为零,每一行的第一种不为零的元素称为该行的主元。对不同的线性方程组的具体求解成果进行归纳总结(有唯一解、无解、有无穷多解),再通过严格证明,可得到有关线性方程组解的鉴别定理:一方面是通过初等变换将方程组化为阶梯形,若得到的阶梯形方程组中浮现0d这一项,则方程组无解,若未浮现一项,则方程组有解;在方程组有解的状况下,若阶梯形的非零行数目r等于未知量数目n,方程组有唯一解,若rn,则方程组有无穷多解。在运用初等变换得到阶梯型后,还可进一步得到最简形,使用最简形,最简形的特点是主元上方的

4、元素也全为零,这对于求解未知量的值更加以便,但代价是之前需要通过更多的初等变换。在求解过程中,选择阶梯形还是最简形,取决于个人习惯。常数项全为零的线性方程称为齐次方程组,齐次方程组必有零解。齐次方程组的方程组个数若不不小于未知量个数,则方程组一定有非零解。运用高斯消元法和解的鉴别定理,以及可以回答前述的基本问题(1)解的存在性问题和(2)如何求解的问题,这是以线性方程组为出发点建立起来的最基本理论。对于个方程个未知数的特殊情形,我们发现可以运用系数的某种组合来表达其解,这种按特定规则表达的系数组合称为一种线性方程组(或矩阵)的行列式。行列式的特点:有n!项,每项的符号由角标排列的逆序数决定,是

5、一种数。通过对行列式进行研究,得到了行列式具有的某些性质(如互换某两行其值反号、有两行相应成比例其值为零、可按行展开等等),这些性质均有助于我们更以便的计算行列式。用系数行列式可以判断个方程的元线性方程组的解的状况,这就是克莱姆法则。综上所述,可把行列式看作是为了研究方程数目与未知量数目相等的特殊情形时引出的一部分内容。线性代数知识点框架(二)在运用高斯消元法求解线性方程组的过程中,波及到一种重要的运算,即把某一行的倍数加到另一行上,也就是说,为了研究从线性方程组的系数和常数项判断它有无解,有多少解的问题,需要定义这样的运算,这提示我们可以把问题转为直接研究这种对n元有序数组的数量乘法和加法运

6、算。数域上的元有序数组称为n维向量。设向量a=(a,a2,.,an),称i是a的第i个分量。n元有序数组写成一行,称为行向量,同步它也可以写为一列,称为列向量。要注意的是,行向量和列向量没有本质区别,只是元素的写法不同。矩阵与向量通过行向量组和列向量组相联系。对给定的向量组,可以定义它的一种线性组合。线性表出定义的是一种向量和此外一组向量之间的互相关系。运用矩阵的列向量组,我们可以把一种线性方程组有无解的问题转化为一种向量能否由此外一组向量线性表出的问题。同步要注意这个结论的双向作用。从简朴例子(如几何空间中的三个向量)可以看到,如果一种向量能由此外两个向量a、a线性表出,则这三个向量共面,反

7、之则不共面。为了研究向量个数更多时的类似状况,我们把上述两种对向量组的描述进行推广,便可得到线性有关和线性无关的定义。通过某些简朴例子体会线性有关和线性无关(零向量一定线性无关、单个非零向量线性无关、单位向量组线性无关等等)。从多种角度(线性组合角度、线性表出角度、齐次线性方程组角度)体会线性有关和线性无关的本质。部分组线性有关,整个向量组线性有关。向量组线性无关,延伸组线性无关。回到线性方程组的解的问题,即一种向量b在什么状况下能由另一种向量组a1,a2,.,an线性表出?如果这个向量组自身是线性无关的,可通过度析立即得到答案:b, a1,a2, ., an线性有关。如果这个向量组自身是线性

8、有关的,则需进一步探讨。任意一种向量组,都可以通过依次减少这个向量组中向量的个数找到它的一种部分组,这个部分组的特点是:自身线性无关,从向量组的其他向量中任取一种进去,得到的新的向量组都线性有关,我们把这种部分组称作一种向量组的极大线性无关组。如果一种向量组A中的每个向量都能被另一种向量组B线性表出,则称A能被B线性表出。如果A和B能互相线性表出,称和B等价。一种向量组也许又不止一种极大线性无关组,但可以拟定的是,向量组和它的极大线性无关组等价,同步由等价的传递性可知,任意两个极大线性无关组等价。注意到一种重要事实:一种线性无关的向量组不能被个数比它更少的向量组线性表出。这是不难理解的,例如不

9、共面的三个向量(相应线性无关)的确不也许由平面内的两个向量构成的向量组线性表出。一种向量组的任意两个极大线性无关组所含的向量个数相等,我们将这个数目称为向量组的秩。向量线性无关的充足必要条件是它的秩等于它所含向量的数目。等价的向量组有相似的秩。有了秩的概念后来,我们可以把线性有关的向量组用它的极大线性无关组来替代掉,从而得到线性方程组的有解的充足必要条件:若系数矩阵的列向量组的秩和增广矩阵的列向量组的秩相等,则有解,若不等,则无解。向量组的秩是一种自然数,由这个自然数就可以判断向量组是线性有关还是线性无关,由此可见,秩是一种非常深刻而重要的概念,故有必要进一步研究向量组的秩的计算措施。 线性代

10、数知识点框架(三)为了求向量组的秩,我们来考虑矩阵。矩阵的列向量组的秩称为矩阵的列秩,行向量组的秩称为行秩。对阶梯形矩阵进行考察,发现阶梯形矩阵的行秩等于列秩,并且都等于阶梯形的非零行的数目,并且主元所在的列构成列向量组的一种极大线性无关组。矩阵的初等行变换不会变化矩阵的行秩,也不会变化矩阵的列秩。任取一种矩阵,通过初等行变换将其化成阶梯形,则有:A的行秩=J的行秩J的列秩=的列秩,即对任意一种矩阵来说,其行秩和列秩相等,我们统称为矩阵的秩。通过初等行变换化矩阵为阶梯形,即是一种求矩阵列向量组的极大线性无关组的措施。考虑到A的行秩和A的转置的列秩的等同性,则初等列变换也不会变化矩阵的秩。综上所

11、述,初等变换不会变化矩阵的秩。因此如果只需规定矩阵A的秩,而不需规定A的列向量组的极大无关组时,可以对A既作初等行变换,又作初等列变换,这会给计算带来以便。矩阵的秩,同步又可定义为不为零的子式的最高阶数。满秩矩阵的行列式不等于零。非满秩矩阵的行列式必为零。既然矩阵的秩和矩阵的列秩相似,则可以把线性方程组有解的充足必要条件更加简朴的体现如下:系数矩阵的秩等于增广矩阵的秩。此外,有唯一解和有无穷多解的条件也可从秩的角度给出回答:系数矩阵的秩r等于未知量数目n,有唯一解,n,有无穷多解。齐次线性方程组的解的构造问题,可以用基本解系来表达。当齐次线性方程组有非零解时,基本解系所含向量个数等于-r,用基

12、本解系表达的方程组的解的集合称为通解。通过对具体实例进行分析,可以看到求基本解系的措施还是在于用初等行变换化阶梯形。非齐次线性方程组的解的构造,是由相应的齐次通解加上一种特解。线性代数知识点框架(四)在之前研究线性方程组的解的过程当中,注意到矩阵及其秩有着重要的地位和应用,故尚有必要对矩阵及其运算进行专门探讨。矩阵的加法和数乘,与向量的运算类同。矩阵的此外一种重要应用:线性变换(最典型例子是旋转变换)。即可以把一种矩阵看作是一种线性变换在数学上的表述。矩阵的乘法,反映的是线性变换的叠加。如矩阵A相应的是旋转一种角度a,矩阵B相应的是旋转一种角度b,则矩阵AB相应的是旋转一种角度ab。矩阵乘法的

13、特点:若=AB,则C的第i行、第j列的元素是的第行与B的第列的元素相应乘积之和;A的列数要和的行数相似;C的行数是A的行数,列数是B的列数。需要主义的是矩阵乘法不满足互换律,满足结合律。运用矩阵乘积的写法,线性方程组可更简朴的表达为:Ax=。对于C=AB,还可作如下分析:将左边的矩阵A写成列向量组的形式,即意味着C的列向量组能由A的列向量组表达,从而推知C的列秩不不小于等于A的列秩;将右边的矩阵B写成行向量组的形式,即意味着C的行向量组能由的行向量组表达,从而推知C的行秩不不小于等于B的行秩,再考虑到矩阵的行秩等于列秩等于矩阵的秩,最后可得到结论,C的秩不不小于等于A的秩,也不不小于等于的秩,

14、即矩阵乘积的秩总不超过任一种因子的秩。有关矩阵乘积的此外一种重要结论:矩阵乘积的行列式等于各因子的行列式的乘积。某些特殊的矩阵:单位阵、对角阵、初等矩阵。特别要注意,初等矩阵是单位阵通过一次初等变换得到的矩阵。每一种初等矩阵相应一种初等变换,由于左乘的形式为A(为初等矩阵),将A写成行向量组的形式,PA意味着对做了一次初等行变换;同理,P意味着对A做了一次初等列变换,故左乘相应行变换,右乘相应列变换。若ABE,则称A为可逆矩阵,B是A的逆阵,同样,这时的B也是可逆矩阵,注意可逆矩阵一定是方阵。第一种求逆阵的措施:随着阵。这种措施的理论根据是行列式的按行(列)展开。矩阵可逆,行列式不为零,行(列

15、)向量组线性无关,满秩,要注意这些结论之间的充足必要性。单位阵和初等矩阵都是可逆的。若矩阵可逆,则一定可以通过初等变换化为单位阵,这是不难理解的,由于初等矩阵满秩,故最后化成的阶梯型(最简形)中非零行数目等于行数,主元数目等于列数,这即是单位阵。进一步,既然可逆矩阵可以通过初等变换化为单位阵,而初等变换相应的是初等矩阵,即意味着:可逆矩阵可以通过左(右)乘一系列初等矩阵化为单位阵,换言之可逆矩阵可看作是一系列初等矩阵的乘积,由于单位阵在乘积中可略去。可逆矩阵作为因子不会变化被乘(无论左乘右乘)的矩阵的秩。由于可逆矩阵可以看作是一系列初等矩阵的乘积,可以想象,同样的这一系列初等矩阵作用在单位阵上,成果是将这个单位阵变为本来矩阵的逆阵,由此引出求逆阵的第二种措施:初等变换。需要注意的是这个过程中不能混用行列变换,且同样是左乘相应行变换,右乘相应列变换。矩阵分块,即可把矩阵中的某些行和列的元素看作一种整体,对这些被看作是整体的对象构成的新的矩阵,运算法则仍然合用。将矩阵当作某些列行向量组或列向量组的形式,实际也就是一种最常用

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 活动策划

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号