微波烧结技术

上传人:pu****.1 文档编号:469773689 上传时间:2022-10-21 格式:DOCX 页数:7 大小:16.52KB
返回 下载 相关 举报
微波烧结技术_第1页
第1页 / 共7页
微波烧结技术_第2页
第2页 / 共7页
微波烧结技术_第3页
第3页 / 共7页
微波烧结技术_第4页
第4页 / 共7页
微波烧结技术_第5页
第5页 / 共7页
点击查看更多>>
资源描述

《微波烧结技术》由会员分享,可在线阅读,更多相关《微波烧结技术(7页珍藏版)》请在金锄头文库上搜索。

1、微波设备烧结技术的进展及未来展望地点:微朗科技微波实验室单位:株洲市微朗科技有限公司时间:2013-01-10声明:本研究成果归株洲市微朗科技有限公司所有,仿冒必究.材料的微波烧结开始于20世纪60年代中期,W.R.Tinga首先提出了陶瓷材料的微波 烧结技术;到20世纪70年代中期,法国的J.C.Badot和A.J.Berteand开始对微波烧结技 术进行系统研究。20世纪80年代以后,各种高性能的陶瓷和金属材料得到了广泛应用, 相应的制备技术也成了人们关注的焦点,微波烧结以其特有的节能、省时的优点,得到了美 国、日本、加拿大、英国、德国等发达国家的政府、工业界、学术界的广泛重视,我国也于

2、1988年将其纳入863计划。在此期间,主要探索和研究了微波理论、微波烧结装置系 统优化设计和材料烧结工艺、材料介电参数测试,材料与微波交互作用机制以及电磁场和温 度场计算机数值模拟等,烧结了许多不同类型的材料。20世纪90年代后期,微波烧结已 进入产业化阶段,美国、加拿大、德国等发达国家开始小批量生产陶瓷产品。其中,美国已 具有生产微波连续烧结设备的能力。微波烧结的技术原理微波烧结是利用微波加热来对材料进行烧结。它同传统的加热方式不同。传统的加热 是依靠发热体将热能通过对流、传导或辐射方式传递至被加热物而使其达到某一温度,热量 从外向内传递,烧结时间长,也很能得到细晶。而微波烧结则是利用微波

3、具有的特殊波段与 材料的基本细微结构耦合而产生热量材料的介质损耗使其材料整体加热至烧结温度而实现 致密化的方法。1.1材料中的电磁能量耗散材料对微波的吸收是通过与微波电场或磁场耦合,将微波能转化热能来实现的。黄向 东等利用麦克斯韦电磁理论,分析了微波与物质的相互作用机理,指出介质对微波的吸收源 于介质对微波的电导损耗和极化损耗,且高温下电导损耗将占主要地位。在导电材料中,电 磁能量损耗以电导损耗为主。而在介电材料(如陶瓷)中,由于大量的空间电荷能形成的电 偶极子产生取向极化,且相界面堆积的电荷产生界面极化,在交变电场中,其极化响应会明 显落后于迅速变化的外电场,导致极化弛豫。此过程中微观粒子之

4、间的能量交换,在宏观上 就表现为能量损耗。1.2微波促进材料烧结的机制研究结果表明,微波辐射会促进致密化,促进晶粒生长,加快化学反应等效应。因为 在烧结中,微波不仅仅只是作为一种加热能源,微波烧结本身也是一种活化烧结过程。M. A.Janny等首先对微波促进结构的现象进行了分析,测定了高纯A12O3烧结过程中的表观 活化能Ea,发现微波烧结中Ea仅为170kj/mo1,而在常规电阻加热烧结中Ea=575kj/mo 1,由此可推测微波促进了原子的扩散。M.A.Janny等进一步用18O示踪法测量了 A12O3 单晶的扩散过程,也证明微波加热条件下扩散系数高于常规加热时的扩散系数。S.A.Free

5、m an等的实验结果表明,微波场具有增强离子电导的效应。认为高频电场能促进晶粒表层带 电空位的迁移,从而使晶粒产生类似于扩散蠕动的塑性变形,从而促进了烧结的进行。 Birnboin等分析了微波场在2个相互接触的介电球颗粒间的分布发现在烧结颈形成区域,电场被聚焦,颈区域内电场强度大约是所加外场的10倍,而颈区空隙中的场强则是外场的约30倍。并且,在外场与两颗粒中心连线间080的夹角范围内,都发现电场沿平行于 连线方向极化,从而促使传质过程以极快的速度进行。另外,烧结颈区受高度聚焦的电场的 作用还可能使局部区域电离,进一步加速传质过程。这种电离对共价化合物中产生加速传质 尤为重要。上述研究结果表明

6、,局部区域电离引起的加速度传质过程是微波促进烧结的根本 原因。微1波烧结的技术特点2.1微波与材料直接耦合,导致整体加热由于微波的体积加热,得以实现材料中大区域的零梯度均匀加热,使材料内部热应力减少, 从而减少开裂、变形倾向。同时由于微波能被材料直接吸收而转化为热能,所以,能量利 用率极高,比常规烧结节能80%左右。2.2微波烧结升温速度快,烧结时间短某些材料在温度高于临界温度后,其损耗因子迅速增大,导致升温极快。另外,微波的存在 降低了活化能,加快了材料的烧结进程,缩短了烧结时间。短时间烧结晶粒不易长大,易得 到均匀的细晶粒显微结构,内部孔隙少,空隙形状比传统烧结的圆,因而具有更好的延展性

7、和韧性。同时,烧结温度亦有不同程度的降低。2.3微波可对物相进行选择性加热由于不同的材料、不同的物相对微波的吸收存在差异,因此,可以通过选择性和加热或选择 性化学反应获得新材料和新结构。还可以通过添加吸波物相来控制加热区域,也可利用强吸 收材料来预热微波透明材料,利用混合加热烧结低损耗材料。此外,微波烧结易于控制、安 全、无污染。微1波烧结的技术进展3.1微波烧结机理的研究进展微波能促进陶瓷的烧结,但其微观机理却尚不清楚。黄向东等从微波电场使带电缺陷(如空位、间隙离子)产生定向移动的角度,分析了微波对扩散的作用,指出:在微波烧结 陶瓷制品时,相对于常规烧结,微波只是促进了平行于电场方向的致密化

8、,在宏观上对于电 场方向不随时间转向的偏振电磁波,平行于电场方向的收缩率大于垂直电场方向的收缩率。S.A.Freeman等对微波场中NaCl的电荷传运研究表明:微波场的存在未提高原有空位的运 动能力,而是提高了电荷传运的驱动力。另外,S.A.Freeman还对固体中的离子在微波场 中的传送进行了数值模拟。3.2微波烧结的设备与工艺的进展微波烧结的设备对微波烧结技术的发展起着至关重要的作用。H.D.Kimmery等于19 88年设计了频率为28Hz的微波连续烧结系统,其场强分布不均匀性小于4% ;另外,他 们针对频率为2.45GHz的微波连续烧结系统,设计了模式搅拌器以提高场分布的均匀性。 中国

9、科学院沈阳金属研究所和七七二厂设计的会聚天线激励介质多模谐振方案采用将微波 能均匀束在烧结区的方法,取得了显著效果。近年来,中科院沈阳金属所在国家新技术8 63计划的资助下,已研制出多台MFM-863系列的微波烧结设备,其主要性能指标为: 电源,380V , 50Hz ;功率,0.5 - 10kW连续可调;工作频率,2.45GHz ;工作温度:大 于1800C ;烧结区尺寸,120mm*120mm ;平均时耗,0.5 2由炉。在工艺方面,H.D.Kimmery等提出了常规辐射或传导加热与微波直接加热相结合混合 加热法。H.D.Kimmery在烧结ZrO2 (摩尔数分数为8%的Y2O3 )时,采

10、用SiC棒作为感 热器进行混合加热,消除了 ZrO2热失控。3.3微波烧结应用范围的拓展在微波烧结出现的很长一段时间里,主要研究和应用仅限于陶瓷产品。近年来,微波 烧结技术的应用出现了很多新的饿生长点。纳米材料是当今材料研究的热门,微波烧结纳米材料也取得了可喜的进展。李云凯等采用纳 米A12O3和ZrO2( 3Y)纳米粉为原料,对不同配比的Al2O3-ZrO2( 3Y)复相陶瓷进行 了微波烧结研究,获得了很高的致密度,并提高了材料的断裂韧性。J.A.Eastman等用了 6 kW,2.45GHz的微波烧结了平均颗粒尺寸为14mm的TiO2,获得了很好的烧结性能。程 宇航等采用微波烧结方法制备了

11、 CuTi-金刚石复合体,结果表明:金刚石颗粒在烧结中没有 发生石墨化转变,CuTi-金刚石复合体中的金刚石颗粒与CuTi基体间能形成良好的结合。微波加热自蔓延高温成则是微波应用的另一重要方面。1990年,美国佛吉尼亚州立大学的 R.C.Dalton等首先提出微波加热在自蔓延高温合成中的应用,并用该技术合成了 TiC等9 种材料。接着,英、德、美的科学家相继用此法合成了 YBCuO,Si3C4,Al2O3-TiC等材 料。1996年,美国J.K.Bechtholt等对微波自蔓延高温合成中的点火过程进行了数值模拟 分析,通过模拟准确计算了点火时间。1999年,美国S.Gedevabshvili和

12、D.Agrawal等用 该技术合成了 Ti-Al,Cu-Zn-Al等几使种金属间化合物和合金。美国宾夕法尼亚州州立大学的Rustum Roy,Dinesh Agrawal等用微波烧结制造出 粉末冶金不锈钢、铜铁合金、钨铜合金及镣基高温合金。其中,Fe-Ni的断裂模量比常规烧 结制备的大60%。另外,高磁场条件下的微波烧结能够制备长骨完全非晶态的磁性材料, 将具有显著硬磁特性的材料(如NdFeB永磁体)变成软磁材料。4微波烧结的技术展望微波烧结技术的发展已经历了几十年,虽然还有很多不成熟、不完善的地方,但是, 它具有常规技术无法比拟的优点,预示了它广阔的发展前景。首先,作为一种省时、节能、 节省

13、劳动、无污染的技术,微波烧结能满足当今节约能源、保护环境的要求;其次,它所具 有的活化烧结的特点有利于获得优良的显微组织,从而提高材料性能;再次,微波与材料耦 合的特点,决定了用微波可进行选择性加热,从而能制得具有特殊组织的结构材料,如梯度 功能材料。这些优势使得微波烧结在高技术陶瓷及金属陶瓷复合材料制备领域具有广阔的前 景。各种材料的介电损耗特性随频率、温度和杂质含量等的变化而变化,由于自动控制的 需要,与此相关的数据库还需要建立。微波烧结的原理也需要进一步研究清楚。由于微波烧 结炉对产品的选择性强,不同的产品需要的微波炉的参数有很大差异,因此,微波烧结炉的 设备需要投资增大。今后微波烧结设

14、备的方向是用模块化设计与计算机控制相结合。材料的微波烧结开始于20世纪60年代中期,W.R.Tinga首先提出了陶瓷材料的微波烧结 技术;到20世纪70年代中期,法国的J.C.Badot和A.J.Berteand开始对微波烧结技术进 行系统研究。20世纪80年代以后,各种高性能的陶瓷和金属材料得到了广泛应用,相应 的制备技术也成了人们关注的焦点,微波烧结以其特有的节能、省时的优点,得到了美国、 日本、加拿大、英国、德国等发达国家的政府、工业界、学术界的广泛重视,我国也于19 88年将其纳入“863”计划。在此期间,主要探索和研究了微波理论、微波烧结装置系统 优化设计和材料烧结工艺、材料介电参数测试,材料与微波交互作用机制以及电磁场和温度 场计算机数值模拟等,烧结了许多不同类型的材料。20世纪90年代后期,微波烧结已进 入产业化阶段,美国、加拿大、德国等发达国家开始小批量生产陶瓷产品。其中,美国已具 有生产微波连续烧结设备的能力。工业微波知识普及系列之微波烧结

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号