冯慈璋马西奎工程电磁场导论课后重点习题解答

上传人:M****1 文档编号:469737513 上传时间:2023-05-02 格式:DOC 页数:37 大小:3.49MB
返回 下载 相关 举报
冯慈璋马西奎工程电磁场导论课后重点习题解答_第1页
第1页 / 共37页
冯慈璋马西奎工程电磁场导论课后重点习题解答_第2页
第2页 / 共37页
冯慈璋马西奎工程电磁场导论课后重点习题解答_第3页
第3页 / 共37页
冯慈璋马西奎工程电磁场导论课后重点习题解答_第4页
第4页 / 共37页
冯慈璋马西奎工程电磁场导论课后重点习题解答_第5页
第5页 / 共37页
点击查看更多>>
资源描述

《冯慈璋马西奎工程电磁场导论课后重点习题解答》由会员分享,可在线阅读,更多相关《冯慈璋马西奎工程电磁场导论课后重点习题解答(37页珍藏版)》请在金锄头文库上搜索。

1、word122、求如下情况下,真空中带电面之间的电压。(2)、无限长同轴圆柱面,半径分别为和,每单位长度上电荷:柱为而外柱为。解:同轴圆柱面的横截面如下列图,做一长为半径为且与同轴圆柱面共轴的圆柱体。对此圆柱体的外外表应用高斯通量定理,得考虑到此问题中的电通量均为即半径方向,所以电通量对圆柱体前后两个端面的积分为0,并且在圆柱侧面上电通量的大小相等,于是即 , 由此可得 123、高压同轴线的最优尺寸设计高压同轴圆柱电缆,外导体的半径为,外导体间电介质的击穿场强为。导体的半径为,其值可以自由选定但有一最优值。因为太大,外导体的间隙就变得很小,以至在给定的电压下,最大的会超过介质的击穿场强。另一方

2、面,由于的最大值总是在导体的外表上,当很小时,其外表的必定很大。试问为何值时,该电缆能承受最大电压?并求此最大电压。击穿场强:当电场增大达到某一数值时,使得电介质中的束缚电荷能够脱离它的分子 而自由移动,这时电介质就丧失了它的绝缘性能,称为击穿。某种材料能安全地承受的最大电场强度就称为该材料的击穿强度。解:同轴电缆的横截面如图,设同轴电缆导体每单位长度所带电荷的电量为,如此外导体之间与导外表上的电场强度分别为, 而外导体之间的电压为或 即 , 133、两种介质分界面为平面,且分界面一侧的电场强度,其方向与分界面的法线成的角,求分界面另一侧的电场强度的值。解:,根据,得,于是:142、两平行导体

3、平板,相距为,板的尺寸远大于,一板的电位为0,另一板的电位为,两板间充满电荷,电荷体密度与距离成正比,即。试求两极板之间的电位分布注:处板的电位为0。解:电位满足的微分方程为其通解为:定解条件为:; 由得 由得 ,即 于是143、写出如下静电场的边值问题:1、电荷体密度为和注:和为常数,半径分别为与的双层同心带电球体如题143图a; 2、在两同心导体球壳间,左半局部和右半局部分别填充介电常数为与的均匀介质,球壳带总电量为,外球壳接地题143图b;3、半径分别为与的两无限长空心同轴圆柱面导体,圆柱外表上单位长度的电量为,外圆柱面导体接地题143图c。由于对称并假定同轴圆柱面很长,因此介质中的电位

4、和与无关,即只是的函数,所以 电位参考点: ; 边界条件:,即173、在无限大接地导体平板两侧各有一个点电荷和,与导体平板的距离均为,求空间的电位分布。解:设接地平板与和如图a所示。选一直角坐标系,使得轴经过和且正轴方向由指向,而,轴的方向与轴的方向符合右手螺旋关系且导体平板的外表在,平面。计算处的电场时,在处放一镜像电荷,如图b所示,用其等效在导体平板上的感应电荷,因此计算处的电场时,在处放一镜像电荷如图c所示,用其等效在导体平板上的感应电荷,因此175、空气中平行地放置两根长直导线,半径都是2厘米,轴线间距离为12厘米。假如导线间加1000V电压,求两圆柱体外表上相距最近的点和最远的点的电

5、荷面密度。解:由于两根导线为长直平行导线,因此当研究它们附近中部的电场时可将它们看成两根无限长且平行的直导线。在此假定下,可采用电轴法求解此题,电轴的位置与坐标如下列图。由于对称而设负电轴到点的距离矢量为,正电轴到点的距离矢量为点应在以为半径的两个圆之外,如此点的电位为两根导体之间的电压为,因此右边的圆的电位为,即由此可得于是由于两根导线带的异号电荷相互吸引,因而在两根导线侧最靠近处电场最强电荷密度最大,而在两导线外侧相距最远处电荷密度最小。18、对于空气中如下各种电位函数分布,分别求电场强度和电荷体密度:1、2、3、4、解:求解该题目时注意梯度、散度在不同坐标中的表达式不同。1、2、3、4、

6、解:1、设球中的电位函数为,介质的介电常数为,两球外表之间的电位函数为,介质的介电常数为,如此,所满足的微分方程分别为, 选球坐标系,如此由于电荷对称,所以和均与、无关,即和只是的函数,所以, 定解条件为: 分界面条件: ; 电位参考点: ; 附加条件:为有限值2、设介电常数为的介质中的电位函数为,介电常数为的介质中的电位函数为,如此、所满足的微分方程分别为, 选球坐标系,如此由于外球壳为一个等电位面,球壳也为一个等电位面,所以和均与、无关,即和只是的函数,所以, 分界面条件: 由分解面条件可知 。令 ,如此在两导体球壳之间电位满足的微分方程为 电位参考点: ; 边界条件:,即3、设外导体之间

7、介质的介电常数为,介质中的电位函数为,如此所满足的微分方程分别为, 选球柱坐标系,如此194、一个由两只同心导电球壳构成的电容器,球半径为,外球壳半径为,外球壳很薄,其厚度可略去不计,两球壳上所带电荷分别是和,均匀分布在球面上。求这个同心球形电容器静电能量。解:以球形电容器的心为心做一个半径为的球面,并使其介于两导体球壳之间。如此此球面上任意一点的电位移矢量为电场强度为 而电场能量密度为 球形电容器中储存的静电场能量为=195、板间距离为电压为的两平行板电极浸于介电常数为的液态介质中,如下列图。液体介质的密度是,问两极板间的液体将升高多少?解:两平行板电极构成一平板电容器,取如下列图的坐标,设

8、平板电容器在垂直于纸面方向的深度为,如此此电容器的电容为电容中储存的电场能量为液体外表所受的力为此力应和电容器中高出电容器之外液面的液体所受的重力平衡,由此可得即25、外导体的半径分别为和的圆柱形电容器,中间的非理想介质的电导率为。假如在外导体间加电压为,求非理想介质中各点的电位和电场强度。解:设圆柱形电容器介质中的电位为,如此选择圆柱坐标,使轴和电容器的轴线重合,如此有假定电容器在方向上很长,并考虑到轴对称性,电位函数只能是的函数,因此所满足的微分方程可以简化为即 , 两边再积分得电位的通解 定解条件:, 将电位函数的通解带入定解条件,得由上述两式解得, 于是 而 27、一导电弧片由两块不同

9、电导率的薄片构成,如下列图。假如西门子/米,西门子/米,厘米,厘米,钢片厚度为2毫米,电极间的电压,且。求:、弧片的电位分布设轴上电极的电位为0;、总电流和弧片的电阻;、在分界面上,是否突变?、分界面上的电荷密度。解:1、设电导率为的媒质中的电位为,电导率为的媒质中的电位为,选取柱坐标研究此问题。由于在柱坐标中电极上的电位和与无关,因而两局部弧片中的电位也只是的函数,即由上边两式可得、的通解分别为此问题的定解条件是:a bc d根据上述四式可得, , 联立以上四式解得, , 于是 2、根据 得又,因此而 3、由于电流密度的法向分量在分界面上连续,且在此题目中电流密度只有法向分量,因此 。分界面

10、处的电场强度等于分界面处的电流密度与电导率的比值,又,因此 。对于导电媒质中的电流场,媒质的介电常数一律为,因此。4、 211、以橡胶作为绝缘的电缆的漏电阻通过下属方法测定:把长度为的电缆浸入盐水溶液中,然后在电缆导体和溶液之间加电压,从而可测得电流。有一段米长的电缆,浸入后加的电压,测得电流为。绝缘层的厚度和中心导体的半径相等,求绝缘层的电阻率。解: 设导体的电位高于盐水的电位,如此绝缘层中的漏电流密度为:而绝缘层中的电场强度为:设导体的半径为,电缆绝缘层的外半径为,如此导体和盐水之间的电压为:即 将数据代入上式,得321、一半径为长圆柱形导体,被一同样长度的同轴圆筒导体所包围,圆筒半径为,

11、圆柱导体和圆筒导体载有相反方向电流。求圆筒外的磁感应强度导体和圆筒外导磁媒质的磁导率均为。解:求解此问题可将圆柱导体和圆筒导体视为无限长。在垂直于的平面上以轴和此平面的交点为心做一半径为的圆,设的方向和符合右手螺旋关系。由安培环路定律得:式中为中包含的电流,其方向与符合右手螺旋关系时为正,否如此为负。考虑到在上的大小相等,方向为的切线方向,如此有即 , 而 , 当时,有而 当时,有而 当时,有因而 333、在恒定磁场中,假如两种不同媒质分解面为平面,其上有电流线密度,求。解:设的区域中的磁导率、磁场强度、磁感应强度分别为、;的区域中的磁导率、磁场强度、磁感应强度分别为、。由条件得:; ; 由分

12、解面条件得:; ;将条件代入,得:; ; 而 于是 343、电流分布为为常数,求矢量位和磁感应强度注的参考点选为处。 解:设的区域中的矢量磁位为,的区域的矢量磁位为,如此、所满足的微分方程分别为:考虑到电流密度只有分量,矢量磁位也只能有分量,上两可改写为选圆柱坐标系,上两式变为由于电流密度不随和变化,所以矢量磁位也不随和变化,因此上述两式可简化为 1 21、2两式的通解分别为 3 4定解条件: 附加条件:当时,应为有限值;参考点处矢量磁位为0,即 分解面条件:;根据定解条件,得: 5 6 7 8即 联立上述三式解得:; ;于是 由柱坐标中的旋度公式可得:361、在磁导率的半无限大导磁媒质中距媒质分界面2cm有一载流为10A的长直细导线,试求媒质分界面另一侧空气中距分界面1cm处点的磁感应强度。解:此题如图1所示,图中,设其方向和正z轴的方向一致求空气中的磁场的等效模型如图2所示。图中的而

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 建筑/环境 > 施工组织

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号