文档详情

土壤有机质分解和转化

ni****g
实名认证
店铺
DOCX
11.55KB
约7页
文档ID:469513121
土壤有机质分解和转化_第1页
1/7

土壤有机质如何分解和转化土壤有机质是土壤的重要组成部分,对土壤肥力、生态环境有重要的作用土壤有机质是指存在于土壤中所有含碳的有机物质, 包括土壤中各种动物、植物 残体、微生物体及其分解和合成的各种有机物质,即由生命体和非生命体两部分 有机物质组成原始土壤中微生物是土壤有机质的最早来源 随着生物的进化和 成土过程的发展,动物、植物残体称为土壤有机质的基本来源自然土壤经人为 影响后,还包括有机肥料、工农业和生活废水、废渣、微生物制品、有机农药等 有机物质土壤有机质分为新鲜有机质、半分解有机质和腐殖质三种新鲜有机质和平 分解有机质,约占有机质总量的 10%〜15%,易机械分开,是土壤有机质的基 本组成部分和养分来源,也是形成腐殖质的原料腐殖质约占 85%-90%,常形成有机无机复合体,难以用机械方法分开,是改良土壤、供给养分的重要物质, 也是土壤肥力水平的重要标志之一耕作土壤表层的有机质含量通常<5%,一般在 1%^ 3%^句,一般把耕作层有机质含量>20%--有机质土壤,耕作层有机质含量 <20%--矿质土壤一、土壤有机质组成土壤有机质由元素和化合物组成1、元素组成主要元素组成是c、h、o、n,分别占52%〜58%、34%〜39%、3.3 %〜4.8 % 和3.7 %〜4.1 %,其次是p、so2、化合物组成(1)糖、有机酸、醛、醇、酮类及其相近的化合物,可溶于水,完全分解产生c o 2和h 2 o ,嫌气分解产生c h 4等还原性气体。

2)纤维、半纤维素,都可被微生物分解,半纤维素在稀酸碱作用下易水解,纤维素在较强酸碱作用下易水解3)木质素,比较稳定,不易被细菌和化学物质分解,但可被真菌和放线 菌分解4)肪、蜡质、树脂和单宁等,不溶于水而溶于醇、醴及苯中,抵抗化学 分解和细菌的分解能力较强,在土壤中除脂肪分解较快外,一般很难彻底分解5)含氮化合物,易被微生物分解6)灰分物质(植物残体燃烧后所留下的灰),占植物体重的5 %主要成 分有 ca、mg k、na、si、p、s、fe、al、mn等二、土壤有机质的分解和转化进入土壤的有机质在微生物作用下,进行着复杂的转化过程,包括矿质化过 程与腐殖化过程(一)矿质化微生物分解有机质,释放co2和无机物的过程称矿化作用这一过程也是有 机质中养分的释放过程土壤有机质的矿质化过程主要有以下几种1、碳水化合物的分解土壤有机质中的碳水化合物如纤维素、 半纤维素、淀粉等糖类,在微生物分泌的糖类水解酶的作用下,首先水解为单糖:(c6h10o5)n +nh2o---nc6h12o6生成的单糖由于环境条件和微生物种类不同, 又可通过不同的途径分解,其 最终产物也不同如果在好气条件下,有好气性微生物分解,最终产物为水和二 氧化碳,放出的热量多,称氧化作用。

其反应如下:nc6h12o6+ 6o2—-> 6co2 + 6h20+ 热量如果在通气不良的条件下,则在嫌气性微生物作用下缓慢分解, 并形成一些 还原性气体、有机酸,产生的热量少,称发酵作用其反应为c6h12o6-- -ch3ch2ch2cooh+ 2h2+2co2 +热量4h2+co2-^ch4+ 2h2o碳水化合物的分解,不仅为微生物的活动提供了碳源和能源, 扩散到近地表 大气层中的co2,还可供绿色植物光合作用所需要的碳素营养 co2溶于水形成 碳酸,有利于土壤矿质养分的溶解和转化,丰富土壤中速效态养分2、含氮有机质的分解含氮有机物是土壤中氮素的主要贮藏状态,包括蛋白质、氨基酸、腐殖质等 不经分解多数不能为植物直接利用1)水解作用蛋白质在微生物分泌的蛋白质水解酶作用下, 分解成氨基酸的作用称水解作蛋白质蛋白质 -氨基酸水解酶氨基酸大多数溶于水,可被植物、微生物吸收利用,也可进一步分解转化2)氨化作用分解含氮有机物产生氨的生物学过程称氨化作用氧化ch2nh2cooh+o2 f hcooh+co2+nh3好气分解还原ch2nh2cooh+h2 fch3cooh+nh3嫌气分解水解ch2nh2cooh+h2o -ch2(oh)cooh + nh3不论土壤通气状况如何,只要微生物生命活动旺盛,氨化作用就可以在多种 条件下进行。

氨化作用生成的氨,在土壤溶液中与酸作用生成较盐, 植物也可以直接吸收利用,也可以nh4+吸附在土壤胶粒上,免遭淋失,也会以 nh3逸入大 气造成氮素的损失,或进行硝化作用,转化成硝酸氨态氮被微生物氧化成亚硝酸,并进一步氧化成硝酸的过程,称硝化作用这一作用可分为两个阶段:第一阶段,氨被亚硝酸细菌氧化成亚硝酸;第二阶段, 亚硝酸被硝化细菌氧化成硝酸其反应如下:2nh2+3o2-- -2hno2+ 2h2o+热量2hno2+ o2—->2hno3+热量硝化作用是一种氧化作用,只能在土壤通气良好的条件下进行,因此适当地 中耕、松土、排水、经常保持土壤疏松透气,是硝化作用顺利进行的必要条件硝化作用产生的硝酸与土壤中的盐基作用生成硝酸盐, no3-也可直接被植物吸收,但no3—不易被土壤胶粒吸附,易随水淋失4)反硝化作用同细菌在无氧或微氧条件下以no3—或no2 —作为呼吸作用的最终电子受体生成n2o和n2的硝酸盐还原过程,称反硝化作用其反应如下:反硝化细菌c6h12o6+24kno3—— —24khco3+6co2+ 12n2T + 18h2o反硝化作用是土壤氮素损失的过程,多发生在通气不良或富含新鲜有机质的土壤中,改善土壤的通气状况,能抑制反硝化作用的进行。

3、含磷、硫有机物的分解土壤中含磷有机物主要有核蛋白、卵磷脂、核酸、核素等,它们在有机磷细 菌的作用下进行分解:磷细困 kH—n naH—C ca2 +核蛋白质 -磷酸 -磷酸盐水解产生的磷酸盐是植物可吸收的磷素养分, 但在酸性或石灰性土壤中易与fe、al、ca、mg等生成难溶性的磷酸盐,降低其有效性在缺氧条件下磷酸又被还 原为磷化氢,其反应如下:h3Po4——-^h3po3— —h3Po2--— -ph3磷化氢有毒,在水淹条件下常会使植物根系发黑甚至死亡2)含硫有机物的分解植物残体中的硫,主要存在于蛋白质中,能分解含硫有机物的土壤微生物很 多,一般能分解含氮有机物的氨化细菌,都能分解有机硫化物,产生硫化氢,具 反应如下:蛋白质——硫氨基酸——h2s还原型的无机硫化物被硫化细菌氧化成硫酸的过程,称硫化作用其反应如 下:2h2s+o2--- -2h2o+ 2s2s + 3o2+ 2h2o- f 2h2so4硫化作用产生的硫酸与土壤中的盐基物质作用, 形成硫酸盐,硫酸盐是植物 可吸收的养分硫酸还可增加土壤中矿质养分的溶解度,提高其有效性细菌在无氧条件下,以so42-作呼吸作用的最终电子受体产生 s或h2s的 硫酸盐还原过程,称反硫化作用。

硫化氢对根系有毒害作用,能造成根系腐烂因此,应排除土壤多余水分,改善土壤通气条件,抑制反硫化作用进行二)腐殖化腐殖化指有机质被分解后再合成新的较稳定的复杂的有机化合物, 并使有机质和养分保蓄起来的过程一般认为腐殖质的形成要经过两个阶段:第一阶段:微生物将动植物残体转化为腐殖质的组分, 如芳香族化合物(多元酚)和含氮的化合物(氨基酸和多肽);第二阶段:在微生物的作用下,各组分通过缩合作用合成腐殖质的过程 在 第二阶段中,微生物分泌的酚氧化化酶,将多元酚氧化为酿,酶与其它含氮化合 物合成腐殖质即1)多元酚氧化为酿;2)酶和氨基酸或肽缩合腐殖化系数:单位重量的有机物质碳在土壤中分解一年后的残留碳量激发作用:土壤中加入新鲜有机物质会促进土壤原有有机质的降解, 这种矿化作用称之激发作用激发效应可正可负矿质化和腐殖化两个过程互相联系, 随条件改变相互转化,矿化的中间产物 是形成腐殖质的原料,腐殖化过程的产物,再经矿化分解释放出养分,通常需调 控两者的速度,使其能供应作物生长的养分同时又使有机质保持在一定的水平。

下载提示
相似文档
正为您匹配相似的精品文档