浙教版特殊三角形复习讲义

上传人:大米 文档编号:466856866 上传时间:2023-06-16 格式:DOC 页数:6 大小:84.01KB
返回 下载 相关 举报
浙教版特殊三角形复习讲义_第1页
第1页 / 共6页
浙教版特殊三角形复习讲义_第2页
第2页 / 共6页
浙教版特殊三角形复习讲义_第3页
第3页 / 共6页
浙教版特殊三角形复习讲义_第4页
第4页 / 共6页
浙教版特殊三角形复习讲义_第5页
第5页 / 共6页
点击查看更多>>
资源描述

《浙教版特殊三角形复习讲义》由会员分享,可在线阅读,更多相关《浙教版特殊三角形复习讲义(6页珍藏版)》请在金锄头文库上搜索。

1、学生: 科目: 第 阶段第 次课 教师: 课 题等腰三角形知识精讲教学目标1. 等腰三角形的有关概念。首先要能根据边的长短识别和判断等腰三角形;其次,能够明确指出已知的等腰三角形的顶角、底角、腰和底边。2. 等腰三角形的轴对称性。通过折纸操作认识探索等腰三角形的轴对称性。明确等腰三角形的对称轴是等腰三角形顶角平分线所在的直线(不是顶角平分线本身)。3. 推导等腰三角形的性质。通过进一步实验、观察、交流等活动推导等腰三角形的性质,从而加深对轴对称变换的认识。 4. 掌握等腰三角形的下列性质:等腰三角形的两个底角相等;等腰三角形三线合一。5. 会利用等腰三角形的性质进行简单的推理、判断、计算和作图

2、。重点、难点重点内容有两个:一是等腰三角形的性质与识别方法;二是学会三角形中相等的角和相等的边的相互转化难点是等腰三角形的识别方法和性质的区别考点及考试要求1,有两条边相等的三角形叫做等腰三角形2,相等的两边叫腰,另一条边叫底边如AB、AC叫腰,BC叫底边3,两腰所夹的角,如BAC叫做顶角,底边与腰的夹角ABC和ACB叫底角4,顶角是直角的等腰三角形叫做等腰直角三角形5,等腰三角形的两个底角相等(简写为“等边对等角”)6,等腰三角形顶角的角平分线、底边上的中线、底边上的高重合(简称“三线合一”)7,等边三角形的各角都相等,并且每一个角都等于608,在直角三角形中,如果一个锐角等于30,那么它所

3、对的直角边等于斜边的一半教学内容知识框架本章掌控小结:1._的三角形叫做等腰三角形。2.等腰三角形是轴对称图形,顶角_是它的对称轴。等边三角形有_条对称轴。3.等腰三角形的两个_相等。等腰三角形的顶角平分线、_和_互相重合。如果一个是三角形有_角相等,那么这个三角形是等腰三角形。4.三边都相等的三角形叫做_。_三角形的内角都相等,且等于_度。5.有一个角是直角的三角形叫做_,记做_。两条直角边_的直角三角形叫做等腰直角三角形。6.直角三角形的性质:(1)在直角三角形中,两个锐角_。(2)直角三角形斜边上的中线等于斜边的_。(3)勾股定理:直角三角形_的平方和等于_的平方。如果用字母a,b,c分

4、别表示两条直角边和斜边,那么有关系式_。7.直角三角形的判定:(1)有两个角_的三角形是直角三角形。(2)如果三角形中两边的_等于第三边的平方,那么这个三角形是直角三角形。8. _和一条直角边对应相等的两个直角三角形全等。9.角的内部,到角两边距离相等的点,在这个角的_上。10.主要方法和技能:(1)运用等腰三角形、直角三角形的性质,进行简单的推理。(2)等腰三角形和直角三角形的判定。(3)判定两个直角三角形全等。(4)有关等腰三角形和直角三角形的尺规作图。考点一:等腰三角形性质在边、角上的应用典型例题例1. (1)若等腰三角形的一个外角为70,则它的底角为_度(2)某等腰三角形的两条边长分别

5、为3cm和6cm,则它的周长为( )A9cmB12cmC15cmD12cm或15cm分析:(1)要考虑这个外角是顶角的外角还是底角的外角,当顶角的外角是70时,则底角为7035或顶角是18070110,则底角是(180110)35;若它是底角的外角,则底角为110,但是两个底角的和为220180,所以这种情况不合理(2)根据三角形的三边关系可知当以3cm为腰时,不能组成三角形,所以只能以3cm为底边,6cm为腰,所以其周长为66315cm解:(1)35(2)C例2. 已知:如图所示,ABC中,ABAC,ADDCBC试求A的度数分析:本题关键是用“等边对等角”来建立各角之间的关系,然后借助三角形

6、内角和建立等量关系,从而解决问题解:设Ax,因为ADDC,所以DCAAx(等边对等角)所以BDCADCA2x(三角形一个外角等于和它不相邻的两内角之和)又因为DCBC,所以BBDC2x(等边对等角)因为ABAC,所以BACB2x(等边对等角)因为ABACB180(三角形内角和等于180),所以x2x2x180,即x36,所以A36知识概括、方法总结与易错点分析评析:(1)在解有关等腰三角形的问题时,若题设中对“腰”还是“底边”或“顶角”还是“底角”指示不明,解题时要分类讨论(2)等腰三角形的性质经常结合三角形外角性质以及三角形内角和定理来解决有关角度计算问题其中等腰三角形的性质与三角形外角性质

7、是建立角之间关系的依据,三角形内角和定理是建立等量关系的依据同时将几何问题转化为方程问题也是我们要掌握的一种数学方法针对性练习例:1,请写出周长为8cm,且边长均为整数的等腰三角形的各边长。2. 在等腰三角形ABC中,ABAC,周长为14cm,AC边上的中线BD把ABC分成了周长差为4cm的两个三角形,求ABC各边长。3. 一个等腰三角形的两个内角度数之比为41,求这个三角形各角度数。考点二:三线合一、实际应用的图形转换 典型例题例3. 如图所示,已知D、E在BC上,ABAC,ADAE试说明:BDCE分析:本题可以通过ABDACE来证明结论,但如果抓住图形的“左右对称”构造“三线合一”来证明结

8、论,就更为简捷解:作AFBC于F因为ABAC,AFBC所以BFFC(等腰三角形底边上的高也是底边上的中线)同理可证DFEF 所以BDCE例4. 如图所示,ABC中,ABC45,H是高AD和BE的交点,那么BHAC吗?说明道理分析:由ABC45,ADBC可得ABD是等腰直角三角形,所以BDADBH和AC是RtBHD和RtACD中对应的斜边本题可以从考虑这两个直角三角形全等入手解:因为ABC45,ADBC,所以ABD是等腰直角三角形,所以BDAD在RtBHD和RtACD中,CBECAD,HDBCDA90BDAD所以RtBHDRtACD(AAS)所以BHAC例5. 如图所示,ABC是等边三角形,BD

9、是AC边上的中线,延长BC到E使CECD,试说明BDE是等腰三角形分析:等边三角形是特殊的等腰三角形,因此等腰三角形的性质同样适用于等边三角形本题中出现了一边上的中线,根据“三线合一”就可以找到解决本题的突破口解:在等边ABC中,因为BD是AC边上的中线,所以BD平分ABC又因为ABC60,所以DBC30又因为CECD,所以CDEEACB30所以DBCE所以BDE是等腰三角形例6 如图所示,上午9时,一条渔船从A出发,以12海里/时的速度向正北航行,11时到达B处,从A、B处望小岛C,测得NAC15,NBC30若小岛周围12.3海里内有暗礁,问该渔船继续向正北航行有无触礁危险?分析:作CDBN

10、于D,该渔船有无触礁危险,关键是看CD与12.3的大小关系,若CD12.3,则无触礁危险;若CD12.3,则有触礁危险故解决本题的关键是计算CD解:作CDBN于DAB12(119)24(海里)因为NAC15,NBC30,所以BCANBCNAC301515所以BCABAC,所以BCAB24(海里)(等角对等边)在CDB中,CDB90,DBC30,所以CDBC12(海里)因为1212.3,所以该渔船继续向正北航行,有触礁危险知识概括、方法总结与易错点分析评析:(1)过去我们习惯利用三角形全等来证明线段相等和角相等,通过本例可以看出,有时利用等腰三角形的性质证明则更为简便由本例还可以看到,图形中若具

11、有很强的“左右对称性”,可以联想构造“三线合一”(2)解决实际问题的关键是构造直角三角形,把角的问题转化为线段问题针对性练习:例:1. 如图,在ABC中,C=25,ADBC,垂足为D,且AB+BD=CD,则BAC的度数是多少度。 2、如图,ABC是边长为3的等边三角形,BDC是等腰三角形,且BDC=120度以D为顶点作一个60角,使其两边分别交AB于点M,交AC于点N,连接MN,则AMN的周长为多少。 3、如图,将边长为2个单位的等边ABC沿边BC向右平移1个单位得到DEF,则四边形ABFD的周长为 4、下图是由九个等边三角形组成的一个六边形,当最小的等边三角形边长为2cm时,这个六边形的周长为

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 中学教育 > 试题/考题 > 初中试题/考题

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号