工业大数据的概念和价值

上传人:人*** 文档编号:466208739 上传时间:2023-08-06 格式:DOC 页数:33 大小:429KB
返回 下载 相关 举报
工业大数据的概念和价值_第1页
第1页 / 共33页
工业大数据的概念和价值_第2页
第2页 / 共33页
工业大数据的概念和价值_第3页
第3页 / 共33页
工业大数据的概念和价值_第4页
第4页 / 共33页
工业大数据的概念和价值_第5页
第5页 / 共33页
点击查看更多>>
资源描述

《工业大数据的概念和价值》由会员分享,可在线阅读,更多相关《工业大数据的概念和价值(33页珍藏版)》请在金锄头文库上搜索。

1、.wd.工业大数据的概念与价值序言:拥抱工业大数据时代的到来当前,以大数据、云计算、移动物联网等为代表的新一轮科技革命席卷全球,正在构筑信息互通、资源共享、能力协同、开放合作的制造业新体系,极大地扩展了制造业创新与开展空间。新一代信息通信技术的开展驱动制造业迈向转型升级的新阶段数据驱动的新阶段,这是新的技术条件下制造业生产全流程、全产业链、产品全生命周期的数据可获取、可分析、可执行的必然结果,也是制造业隐性知识显性化不断取得突破的内在要求。习近平总书记强调,“要着力推动互联网与实体经济深度 融合开展,以信息流带动技术流、资金流、人才流、物资流, 促进资源配置优化,促进全要素生产率提升”。习总书

2、记这段 话深刻阐释了互联网与实体经济的关系,阐释了以互联网为代表的新一代信息通信技术融合创新推动实体经济转型升 级的内在机理,也充分表达了工业大数据作为一种新的资产、资源和生产要素,在制造业创新开展中的作用。可以从三方 面来理解。首先,资源优化是目标。新一代信息通信技术与制造业融合主要动力和核心目标就是不断优化制造资源的配置效率,就是要实现更好的质量、更低的本钱、更快的交付、更 多的满意度,就是要提高制造业全要素生产率。从企业竞争的角度来看,企业是一种配置社会资源的组织,是通过对社会资本、人才、设备、土地、技术等资源进展组合配置来塑造企业竞争能力的组织,是一个通过产品和服务满足客户需求的组织,

3、企业之间竞争的本质是资源配置效率的竞争,这是任何一个时代技术创新应用永恒追求的目标。其次,数据流动是关键。新一代信息通信技术是如何优化制造资源配置效率信息流是如何带动技术流、资金流、人才流、物资流关键是数据流动。从数据流动的视角来看, 数字化解决了“有数据”的问题,网络化解决了“能流动”的问题,智能化要解决数据“自动流动”的问题,即能够把正确的数据在正确的时间以正确的方式传递给正确的人和机器,能够把海量的工业数据转化为信息,信息转化为知识,知识转化为科学决策,以应对和解决制造过程的复杂性和不确定性等问题,在这一过程中不断提高制造资源的配置效率。第三,工业软件是核心。工业大数据的核心在于应用,

4、在于优化资源配置效率,其关键在于,数据如何转化为信息, 信息如何转化为知识,知识如何转化为决策,其背后都有赖于软件,软件是人类隐性知识显性化的载体,软件构建了一套数据如何流动的规则体系,正是这套规则体系确保了正确的数据能够在正确的时间以正确的方式传递给正确的人和机器。工业软件作为一种工具、要素和载体,为制造业建设了一套信息空间与物理空间的闭环赋能体系,实现了物质生产运行规律的模型化、代码化、软件化,使制造过程在虚拟世界实现快速迭代和持续优化,并不断优化物质世界的运行。目 录1.工业大数据的概念11.1.工业大数据的内涵11.2.工业大数据的定义11.3.工业大数据的空间分布31.4.工业大数据

5、的产生主体31.5.工业大数据的开展趋势41.6.工业大数据的特点51.7.工业系统的本质特征51.8.工业大数据的 4V 特征81.9.工业大数据的新特征101.10.工业大数据应用特征112.工业大数据的价值152.1.工业大数据的创新价值152.2.数据始终影响着人类工业化进程152.3.数据在信息化过程中发挥着核心作用172.4.工业大数据是新工业革命的根基动力172.5.中国是制造大国,但不是制造强国182.6.工业大数据提升制造智能化水平,推动中国工业升级192.7.工业大数据支撑工业互联网开展,促进中国工业转型202.8.工业大数据助力中国制造弯道取直211. 工业大数据的概念本

6、章主要讨论工业大数据的概念、意义和开展历程。1.1. 工业大数据的内涵本节主要讨论工业大数据的内涵,从空间分布、产生主体两个维度对工业大数据进展分类,并讨论数据产生主体和内容构造演化路径。1.2. 工业大数据的定义工业大数据即工业数据的总和,我们把它分成三类,即企业信息化数据、工业物联网数据,以及外部跨界数据。其中,企业信息化和工业物联网中机器产生的海量时序数据是工业数据规模变大的主要来源。工业大数据是智能制造与工业互联网的核心,其本质是通过促进数据的自动流动去解决控制和业务问题,减少决策过程所带来的不确定性,并尽量克制人工决策的缺点。首先,企业信息系统存储了高价值密度的核心业务数据。上世纪六

7、十年代以来信息技术加速应用于工业领域,形成了制造执行系统(MES)、企业资源规划(ERP)、产品生命周期管理(PLM)、供给链管理(SCM)和客户关系管理(CRM)等企业信息系统。这些系统中积累的产品研发数据、生产制造数据、供给链数据以及客户服务数据,存在于企业或产业链内部,是工业领域传统数据资产。其次,近年来物联网技术快速开展,工业物联网成为工业大数据新的、增长最快的来源之一,它能实时自动采集设备和装备运行状态数据,并对它们实施远程实时监控。最后,互联网也促进了工业与经济社会各个领域的深度融合。人们开场关注气候变化、生态约束、政治事件、自然灾害、市场变化等因素对企业经营产生的影响。于是,外部

8、跨界数据已成为工业大数据不可无视的来源。1.3. 工业大数据的空间分布工业大数据不仅存在于企业内部,还存在于产业链和跨产业链的经营主体中。企业内部数据,主要是指 MES、ERP、PLM 等自动化与信息化系统中产生的数据。产业链数据是企业供给链(SCM)和价值链(CRM)上的数据,主要是指企业产品供给链和价值链中来自于原材料、生产设备、供给商、用户和运维合作商的数据。跨产业链数据,指来自于企业产品生产和使用过程中相关的市场、地理、环境、法律和政府等外部跨界信息和数据。1.4. 工业大数据的产生主体人和机器是产生工业大数据的主体。人产生的数据是指由人输入到计算机中的数据,例如设计数据、业务数据、产

9、品评论、新闻事件、法律法规等。机器数据是指由传感器、仪器仪表和智能终端等采集的数据。智能制造与工业互联网开展,应致力于推动数据的自动采集。对特定企业而言,机器数据的产生主体可分为生产设备和工业产品两类。生产设备是指作为企业资产的生产工具,工业产品是企业交付给用户使用的物理载体。前一类数据主要服务于智能生产,为智能工厂生产调度、质量控制和绩效管理提供实时数据根基;后一类数据则侧重于智能服务,通过传感器感知产品运行状态信息,帮助用户降低装备维修本钱、提高运行效率、提供安全保障。随着互联网与工业的深度融合,机器数据的传输方式由局域网络走向广域网络,从管理企业内部的机器拓展到管理企业外部的机器, 支撑

10、人类和机器边界的重构、企业和社会边界的重构,释放工业互联网的价值。1.5. 工业大数据的开展趋势从数据类型看,工业大数据可分为构造化数据、半构造化数据和非构造化数据。构造化数据即关系数据,存储在数据库里,可以用二维表构造来表达实体及其联系。不方便用二维表构造来表达的数据即称为非构造化数据,包括办公文档、文本、图片、各类报表、图像、音频、视频等。所谓半构造化数据,就是以 XML 数据为代表的自描述数据,它介于构造化数据和非构造化数据之间。二十世纪六十年代,计算机在企业管理中得到应用,经历了层次、网状等模型后,统一为关系模型,形成了以构造化数据为根基的ERP/MES 管理软件体系。七十年代,随着计

11、算机图形学和辅助设计技术的开展,CAD/CAE/CAM 等工具软件生成了三维模型、工程仿真、加工代码等复杂构造文件,形成了以非构造化数据为根基的 PDM 技术软件体系。二十一世纪,互联网和物联网为企业提供大量的文本、图像、视音频、时序、空间等非构造化数据,进而引发工业数据中构造化数据与非构造化数据的规模比例发生了质的变化。近年来,智能制造和工业互联网推动了以“个性化定制、网络化协同、智能化生产和服务化延伸”为代表的新兴制造模式的开展,未来由人产生的数据规模的比重将逐步降低,机器数据所占据的比重将越来越大。2012 年美国通用电气公司提出的工业大数据(狭义的),主要指工业产品使用过程中由传感器采

12、集的以时空序列为主要类型的机器数据,包括装备状态参数、工况负载和作业环境等信息。1.6. 工业大数据的特点在未来理想状态下,工业大数据应该作为工业系统相关要素在赛博空间的数字化映像、运行轨迹及历史痕迹。工业大数据的特点,应该表达工业系统的本质特征和运行规律,并推开工业进入智能制造时代。本节主要比拟分析工业大数据的特点,进而为后续的讨论奠定根基。1.7. 工业系统的本质特征工业系统往往具有复杂动态系统特性。飞机、高铁、汽车、船舶、火箭等高端工业产品本身就是复杂系统;产品设计过程,首先要满足外部系统复杂多变的需求;生产过程更是一个人机料法环协同交互的多尺度动态系统;使用过程本质上就是产品与外部环境

13、系统的相互作用过程。由此可见,产品全生命周期相关各个环节都具有典型的系统性特征。确定性是工业系统本身能够有效运行的根基。对设计过程来说, 确定性表达为对用户需求、制造能力的准确把握;对生产过程来说, 确定性表达为生产过程稳定、供给链可靠、高效率和低次品率;对使 用过程来说,确定性表达为产品持久耐用、质量稳定和对外部环境变 化的适应性。因此,人们总是倾向于提高系统确实定性,防止不确定 性因素对系统运行的干扰。工业系统设计一般基于科学的原理和行之 有效的经历,输入输出之间的关系表达为强确定性。有效应对不确定 性是工业系统相关各方追求的目标。工业系统是一个开放的动态系统, 要面临复杂多变的内外部环境

14、。因此,不确定性是工业系统必须面临 的客观存在。工业产品全生命周期的各个阶段都面临着不确定性,例 如外部市场与用户需求等因素的不确定性、制造过程中人机料法环等 要素的不确定性,以及产品使用和运行环境的不确定性。应对不确定性的前提是感知信息、消除不确定性。以工业互联网技术为代表的 ICT 技术的开展和普遍应用,能大大提升信息自动感知的能力,能让我们感知到用户需求和市场的变化、感知到远程设备和供给链的异动、感知到人机料法环等诸要素的状态,可减少人在信息感知环节的参与,降低人对信息感知所带来的不确定性影响。在感知的根基上,可以更快速、科学地应对不确定性:通过智能服务,解决用户使用过程中遇到的不确定性

15、问题;通过智能设备,应对设备自身、原料以及运行环境所涉及的其它不确定性问题;通过智能生产,应对用户需求和工厂内部变化引起的不确定性问题;通过工业互联网,应对供给链、跨地域协同中的不确定性问题等等。在此根基上,相关过程产生的大数据,能够帮助我们更加深入、准确地理解工业过程,进而将工业过程中的个性化问题归结成共性问题、形成知识,并用于优化和指导企业的各种业务。这样,通过工业互联网和大数据技术的应用,能将不确定性转化为开拓市场、提质增效、转型创新的能力,把工业带入智能制造时代。由此可见,工业系统同时具有确定性和不确定性的特征,确定性是目标,不确定性则是时机。1.8. 工业大数据的 4V 特征工业大数据首先符合大数据的 4V 特征,即大规模(Volumn)、速度快(Velocity)、类型杂(Variety)、低质量(Veracity)。所谓“大规模”,就是指数据规模大,而且面临着大规模增长。我国大型的制造业企业,由人产生的数据规模一般在 TB 级或以下,但形成了高价值密度的核心业务数据。机器数据规模将可达 PB 级,是“大”数据的主要来源,但相对价值密度较低。随着智能制造和物联网技术的开展,产品制造阶段少人化、无人化程度越来越高,运维阶段产品运行状态监控度不断提升,未来人产生的数据规模的比重降

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 建筑/环境 > 施工组织

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号