赤霉素的作用

上传人:枫** 文档编号:465837701 上传时间:2023-01-24 格式:DOCX 页数:11 大小:40.79KB
返回 下载 相关 举报
赤霉素的作用_第1页
第1页 / 共11页
赤霉素的作用_第2页
第2页 / 共11页
赤霉素的作用_第3页
第3页 / 共11页
赤霉素的作用_第4页
第4页 / 共11页
赤霉素的作用_第5页
第5页 / 共11页
点击查看更多>>
资源描述

《赤霉素的作用》由会员分享,可在线阅读,更多相关《赤霉素的作用(11页珍藏版)》请在金锄头文库上搜索。

1、变温及药剂处理打破休眠后,播种才能出苗。将种子放在种子重量3倍的250mg/l的赤霉素溶液 或 1%的硫酸铜溶液中浸种 24h,.赤霉素 gibberellin 简称:GA一类主要促进节间生长的植物激素,因发现 其作用及分离提纯时所用的材料来自赤霉菌而 得名。赤霉菌是水稻恶苗病的病原菌,感病植株的 咼生长速率远远超过无病植株。1926年日本黑 泽英一用赤霉菌培养基的无细胞滤液处理无病水稻,产生了与染病植株相同的徒 长现象,这提示赤霉菌中有促进水稻生长的物质。1938年日本薮田贞治郎和住 木谕介从赤霉菌培养基的滤液中分离出这种活性物质,并鉴定了它的化学结构。 命名为赤霉酸。1956年C.A韦斯特

2、和B.O.菲尼分别证明在高等植物中普遍存 在着一些类似赤霉酸的物质。到1983年已分离和鉴定出60多种。一般分为自由 态及结合态两类,统称赤霉素(见图)。赤霉素都含有(一)一赤霉素烷骨架,它的化学结构比较复杂,是双萜化合 物。在高等植物中赤霉素的最近前体一般认为是贝壳杉烯。各种不同的赤霉素之 间的差别在于双键、羟基的数目和位置。自由态赤霉素是具19C或20C的一、 二或三羧酸。结合态赤霉素多为萄糖苷或葡糖基酯,易溶于水。赤霉素可以用甲醇提取。不同的赤霉素可以用各种色谱分析技术分开。提纯 的赤霉素经稀释后处理矮生植物,如矮生玉米,观察其促进高生长的效应,可鉴 定其生物活性。不同的赤霉素生物活性不

3、同,赤霉酸(GA3)的活性最高。活性高 的化合物必须有一个赤霉环系统(环ABCD),在C-7上有羧基,在A环上有一 个内酯环。植物各部分的赤霉素含量不同,种子里最丰富,特别是在成熟期。赤霉素最突出的生理效应是促进茎的伸长和诱导长日植物在短日条件下抽 薹开花。各种植物对赤霉素的敏感程度不同。遗传上矮生的植物如矮生的玉米和 豌豆对赤霉素最敏感,经赤霉素处理后株型与非矮生的相似;非矮生植物则只有 轻微的反应。有些植物遗传上矮生性的原因就是缺乏内源赤霉素(另一些则不 然)。赤霉素在种子发芽中起调节作用。许多禾谷类植物例如大麦的种子中的淀 粉,在发芽时迅速水解;如果把胚去掉,淀粉就不水解。用赤霉素处理无

4、胚的种 子,淀粉就又能水解,证明了赤霉素可以代替胚引起淀粉水解。赤霉素能代替红 光促进光敏感植物萬苣种子的发芽和代替胡萝卜开花所需要的春化作用。赤霉素 还能引起某些植物单性果实的形成。对某些植物,特别是无籽葡萄品种,在开花 时用赤霉素处理,可促进无籽果实的发育。但对某些生理现象有时有抑制作用。关于赤霉素的作用机理,研究得较深入的是它对去胚大麦种子中淀粉水解的 诱发。用赤霉素处理灭菌的去胚大麦种子,发现GA3显著促进其糊粉层中a - 淀粉酶的新合成,从而引起淀粉的水解。在完整大麦种子发芽时,胚含有赤霉素, 分泌到糊粉层去。此外,GA3还刺激糊粉层细胞合成蛋白酶,促进核糖核酸酶及 葡聚糖酶的分泌。

5、赤霉素应用于农业生产,在某些方面有较好效果。例如提高无籽葡萄产量, 打破马铃薯休眠;在酿造啤酒时,用GA3来促进制备麦芽糖用的大麦种子的萌发; 当晚稻遇阴雨低温而抽穗迟缓时,用赤霉素处理能促进抽穗;或在杂交水稻制种 中调节花期以使父母本花期相遇。以ent-赤霉烷(gibberellane)为基本骨架的四环双萜的一种植物激素。 由ent-贝壳杉烯(ka urene)生物合成的。按照分离的顺序而定名为赤霉素A (缩写为GA)。现在已经鉴定出有四十种以上的赤霉素,但不一定所有的都具 有生理效应。具有r-内酯的C19 GA及其前体C20 GA,是以结合型赤霉素而存 在。GA是从水稻恶苗病菌(完全世代为

6、Gi bberella fujikuroi (Sawada) W入, 不完全世代为Fusarium moniliforme Sheldon的培养液中分离出来的,是一 种能引起稻苗徒长的物质,由黑泽英一在1926年发现的,后经薮田贞治郎和住 木谕介(1928)获得结晶并命名。这种结晶的有效成分后来查明为GAI、GA2和 GA3的混合物。有J. MacMilan和J. Suter (1958)从高等植物中分离得到GA1 以来,到现在已得到20种以上,含有赤霉素的低等植物,在植物界也广泛存在。 在高等植物中,赤霉素是在未成熟种子、顶芽和根等器官中合成的。GA的典型 生理作用是能促进枝条的生长,尤其是

7、能促进无伤害植物的整体生长。植物的矮 化认为多半是由于体内的GA合成系统,在遗传上发生异常而造成的,为供给GA, 则可以由矮化恢复正常。呈莲座状生长的植物,即使在非诱导的条件下,GA处 理也能使其抽薹。对根的生长一般是没有效果的。GA促进生长的作用,认为是 促进了细胞的分裂和细胞的伸长两个方面,但认为促进伸长的作用是与生长素的 作用有密切关系。此外,GA还具有打破种子和芽的休眠,促进长日照植物的开 花,诱发葡萄等的单性结实,抑制某些种植物叶片老化等效应。在谷类种子的糊 粉层中,能诱导a-淀粉酶(胚乳检定法)、核糖核酸酶和蛋白酶等水解酶的重 新合成。赤霉素是一类属于双萜类化合物的植物激素。192

8、6年日本病理学家黑泽在水稻 恶苗病的研究中发现水稻植株发生徒长是由赤霉菌的分泌物所引起的。1935年 日本薮田从水稻赤霉菌中分离出一种活性制品,并得到结晶,定名为赤霉素(GA)。 第一种被分离鉴定的赤霉素称为赤霉酸(GA3),现已从高等植物和微生物中分 离出70余种赤霉素。因为赤霉素都含有羧基,故呈酸性。内源赤霉素以游离和 结合型两种形态存在,可以互相转化。赤霉素pH值34的溶液中最稳定,pH值过高或过低都会使赤霉素变成无生理活 性的伪赤霉素或赤霉烯酸。赤霉素的前体是贝壳杉烯。某些生长延缓剂,如阿莫 -1618和矮壮素等能抑制贝壳杉烯的形成,福斯方-D能抑制贝壳杉烯转变为赤霉 素。赤霉素在植物

9、体内的形成部位一般是嫩叶、芽、幼根以及未成熟的种子等幼 嫩组织。不同的赤霉素存在于各种植物不同的器官内。幼叶和嫩枝顶端形成的赤霉素通过韧皮部输出,根中生成的赤霉素通过木质部向上运输。赤霉素中生理活性最强、研究最多的是GA3,它能显著地促进植物茎、叶生长, 特别是对遗传型和生理型的矮生植物有明显的促进作用;能代替某些种子萌发所 需要的光照和低温条件,从而促进发芽;可使长日照植物在短日照条件下开花, 缩短生活周期;能诱导开花,增加瓜类的雄花数,诱导单性结实,提高坐果率, 促进果实生长,延缓果实衰老。除此之外,GA3还可用于防止果皮腐烂;在棉花 盛花期喷洒能减少蕾铃脱落;马铃薯浸种可打破休眠;大麦浸

10、种可提高麦芽糖产赤霉素很多生理效应与它调节植物组织内的核酸和蛋白质有关,它不仅能激活种 子中的多种水解酶,还能促进新酶合成。研究最多的是GA3诱导大麦粒中a -淀 粉酶生成的显著作用。另外还诱导蛋白酶、P -1,3-葡萄糖苷酶、核糖核酸酶的 合成。赤霉素刺激茎伸长与核酸代谢有关,它首先作用于脱氧核糖核酸(DNA), 使DNA活化,然后转录成信使核糖核酸(mRNA),从mRNA翻译成特定的蛋白质。赤霉素的生理作用促进麦芽糖的转化(诱导a 淀粉酶形成);促进营养生长(对根的生长无促 进作用,但显著促进茎叶的生长),防止器官脱落和打破休眠等。赤霉素最突出的作用是加速细胞的伸长(赤霉素可以提高植物体内

11、生长素的含 量,而生长素直接调节细胞的伸长),对细胞的分裂也有促进作用,它可以促进 细胞的扩大(但不引起细胞壁的酸化)GibberellinAny of the members of a family of higher-plant hormones characterized by the ent-gibberellane skeleton. Some of these compounds have profound effects on many aspects of plant growth and development, which indicates an important re

12、gulatory role.There are two classes of gibberellins: the 19-carbon gibberellins and the 20-carbon gibberellins. The 19-carbon gibberellins, formed from 20-carbon gibberellins, are the bio-logically active forms. Gibberellins also vary according to the position and number of hydroxyl groups linked to

13、 the carbon atoms of the ent-gibberellane skeleton. Hydroxylation has a profound influence on biological activity.Probably the best-defined role for gibberellins in regulating the developmental processes in higher plants is stem growth. The cellular basis for gibberellin-induced stem growth can be e

14、ither an increase in the length of pith cells in the stem or primarily the production of a greater number of cells. Applied gibberellins can often promote germination of dormant seeds, a capability suggesting that gibberellins are involved in the process of breaking dormancy. Gibberellins are intima

15、tely involved in other aspects of seed germination as well. Applied gibberellins promote or induce flowering in plants that require either cold or long days for flower induction. Gibberellin is probably not the flowering hormone or floral stimulus, because the floral stimulus appears to be identical

16、 or similar in all response types. The application of gibberellins often modifies sex expression, usually causing an increase in the number of male flowers. See also Dormancy; Flower; Plant growth; Seed.Although gibberellins have limited use in agriculture compared with other agricultural chemicals such as herbicides, several important applications have been developed, including the production of seedless grapes. Application of gibberellin

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号