武汉储氢瓶项目可行性研究报告【范文模板】

上传人:cn****1 文档编号:460571881 上传时间:2023-04-14 格式:DOCX 页数:134 大小:128.91KB
返回 下载 相关 举报
武汉储氢瓶项目可行性研究报告【范文模板】_第1页
第1页 / 共134页
武汉储氢瓶项目可行性研究报告【范文模板】_第2页
第2页 / 共134页
武汉储氢瓶项目可行性研究报告【范文模板】_第3页
第3页 / 共134页
武汉储氢瓶项目可行性研究报告【范文模板】_第4页
第4页 / 共134页
武汉储氢瓶项目可行性研究报告【范文模板】_第5页
第5页 / 共134页
点击查看更多>>
资源描述

《武汉储氢瓶项目可行性研究报告【范文模板】》由会员分享,可在线阅读,更多相关《武汉储氢瓶项目可行性研究报告【范文模板】(134页珍藏版)》请在金锄头文库上搜索。

1、泓域咨询/武汉储氢瓶项目可行性研究报告目录第一章 行业、市场分析7一、 储氢瓶:氢能行业发展带动储氢瓶碳纤维的需求增长7二、 国内企业在技术上取得突破,碳纤维国产替代未来可期9第二章 项目背景分析10一、 国外企业占据高端产能,国内企业正在奋力10二、 技术取得突破,为碳纤维国产替代奠定基础11三、 全球风电蓬勃发展,海上风电装机量持续高增13四、 开拓市场空间,构建新发展格局重要枢纽14第三章 项目绪论18一、 项目概述18二、 项目提出的理由20三、 项目总投资及资金构成21四、 资金筹措方案21五、 项目预期经济效益规划目标21六、 项目建设进度规划22七、 环境影响22八、 报告编制依

2、据和原则22九、 研究范围24十、 研究结论24十一、 主要经济指标一览表25主要经济指标一览表25第四章 选址分析27一、 项目选址原则27二、 建设区基本情况27三、 坚持创新第一动力,建设国家科技创新中心30四、 坚持更大力度改革,打造营商环境最优城市33五、 项目选址综合评价35第五章 建筑技术分析37一、 项目工程设计总体要求37二、 建设方案38三、 建筑工程建设指标41建筑工程投资一览表41第六章 产品方案与建设规划43一、 建设规模及主要建设内容43二、 产品规划方案及生产纲领43产品规划方案一览表43第七章 法人治理结构46一、 股东权利及义务46二、 董事51三、 高级管理

3、人员55四、 监事57第八章 SWOT分析说明60一、 优势分析(S)60二、 劣势分析(W)61三、 机会分析(O)62四、 威胁分析(T)62第九章 发展规划68一、 公司发展规划68二、 保障措施69第十章 人力资源配置72一、 人力资源配置72劳动定员一览表72二、 员工技能培训72第十一章 技术方案分析75一、 企业技术研发分析75二、 项目技术工艺分析77三、 质量管理78四、 设备选型方案79主要设备购置一览表80第十二章 项目节能方案81一、 项目节能概述81二、 能源消费种类和数量分析82能耗分析一览表83三、 项目节能措施83四、 节能综合评价84第十三章 原辅材料成品管理

4、86一、 项目建设期原辅材料供应情况86二、 项目运营期原辅材料供应及质量管理86第十四章 项目投资计划88一、 投资估算的编制说明88二、 建设投资估算88建设投资估算表90三、 建设期利息90建设期利息估算表91四、 流动资金92流动资金估算表92五、 项目总投资93总投资及构成一览表93六、 资金筹措与投资计划94项目投资计划与资金筹措一览表95第十五章 经济效益分析97一、 基本假设及基础参数选取97二、 经济评价财务测算97营业收入、税金及附加和增值税估算表97综合总成本费用估算表99利润及利润分配表101三、 项目盈利能力分析101项目投资现金流量表103四、 财务生存能力分析10

5、4五、 偿债能力分析105借款还本付息计划表106六、 经济评价结论106第十六章 项目招标方案108一、 项目招标依据108二、 项目招标范围108三、 招标要求108四、 招标组织方式109五、 招标信息发布109第十七章 风险分析110一、 项目风险分析110二、 项目风险对策112第十八章 总结评价说明115第十九章 附表附件118主要经济指标一览表118建设投资估算表119建设期利息估算表120固定资产投资估算表121流动资金估算表122总投资及构成一览表123项目投资计划与资金筹措一览表124营业收入、税金及附加和增值税估算表125综合总成本费用估算表125固定资产折旧费估算表12

6、6无形资产和其他资产摊销估算表127利润及利润分配表128项目投资现金流量表129借款还本付息计划表130建筑工程投资一览表131项目实施进度计划一览表132主要设备购置一览表133能耗分析一览表133第一章 行业、市场分析一、 储氢瓶:氢能行业发展带动储氢瓶碳纤维的需求增长氢能的储运根据氢或储氢材料形态的不同主要分为气态储运、液态储运、固态储运及有机液体储运等四种方式:(1)气态储运,主要包括近距离运输的高压长管拖车以及长距离运输的管道运输,其中管道运输适用于大规模氢气运输;(2)液态储运,低温液态储氢是将氢气冷冻至零下252.72以变为液体加注到绝热容器中进行储运,储运工具主要为用于长距离

7、、大规模运输的液氢槽罐车;(3)固态储运,是以金属氢化物、化学氢化物或纳米材料等作为储氢载体,通过化学吸附和物理吸附的方式进行氢储运,对储运工具并无特殊要求;(4)有机液体储运,是通过加氢反应将氢气固定到芳香族有机化合物并形成稳定的氢有机化合物液体,最终以液体槽罐车进行储运。高压气态储氢目前是国内主流的储氢方式。在主要的氢储运技术中,最成熟的是高压气态储运,也是现阶段国内最主要的氢储运方式。气态储运常温即可实现快速充放氢,成本较低,因此得到广泛应用,但储氢量较低,且对高压储氢罐存在较高的技术要求。另一方面,管道运输是实现氢气大规模、长距离运输的重要方式,能耗小且成本较低。但类似于天然气管网系统

8、建设,输氢管道建设所需一次性投资较大,基建成本高昂且建设周期较长。相较于欧美国家已相对成熟的输氢管网系统,中国输氢管道建设仍处于起步阶段。而在现有的天然气管网系统中混入氢气是初期管道输氢的主要探索方向。国产IV型瓶技术取得突破,将带动碳纤维需求提升。高压氢气瓶主要分为四个型号:(1)I型全金属气瓶,(2)II型金属内胆纤维环向缠绕气瓶,(3)III型金属内胆纤维全缠绕气瓶,(4)IV型非金属内胆纤维全缠绕气瓶。其中,I型、II型气瓶由于质量过大、储氢密度低,难以满足氢燃料电池汽车的储氢需求,主要用于工业、加氢站等固定地点用途。而III型、IV型气瓶采用了纤维全缠绕的方式,具有质量轻、储氢密度高

9、、安全性高等优点,已经被广泛应用于车载领域。目前,国内主要采用III型储氢瓶(35MPa),相较于国际主流的IV型70MPa高压储氢瓶仍存在一定的技术差距,但在2020年末我国国产IV型瓶技术取得了重大突破。沈阳斯林达安科新技术有限公司生产的70MPa氢气瓶,已经通过型式检验,各项参数均满足车用压缩氢气塑料内胆碳纤维全缠绕气瓶国家标准,成为国内首家IV型瓶通过技术评审的企业。相同体积下,压力与储氢量成正比,IV型瓶成为氢燃料电池汽车的首选储氢瓶,续航里程可以有效提高。根据中科院宁波材料所特种纤维事业部的数据,氢能商用车携带4个储氢瓶,单个储氢瓶碳纤维用量约80Kg;乘用车携带2个储氢瓶,单瓶碳

10、纤维用量为37.5kg。在燃料电池汽车示范应用政策的推动下,我国氢燃料电池汽车保有量将会逐步增加,从而带动碳纤维需求的大幅提升。根据广州赛奥碳纤维2020全球碳纤维复合材料市场报告,预计2025年全球压力容器碳纤维需求量将达到2.19万吨,2021-2025年CAGR为20%。二、 国内企业在技术上取得突破,碳纤维国产替代未来可期欧美日企业很早就开始研发碳纤维技术,并将技术与产业发展相融合,具备先发优势,占据很大一部分的市场份额,对高端碳纤维的市场更是形成了垄断。由于碳纤维具备战略属性,叠加地缘政治紧张,国外对于碳纤维有一定的限制封锁,随着国内碳纤维企业在生产工艺上取得突破,同时下游需求高速增

11、长,国产替代化具备广阔空间。受益标的:(1)具备大丝束全套技术的企业:上海石化;(2)国内碳纤维原丝龙头:吉林碳谷、吉林化纤;(3)国内碳纤维生产线整线供应和整线解决方案的企业:精功科技;(4)国内碳纤维龙头:中复神鹰、光威复材、中简科技。第二章 项目背景分析一、 国外企业占据高端产能,国内企业正在奋力欧美日企业具有先发优势,碳纤维生产工艺已非常成熟。1959年日本大阪工业试验所成功发明了PAN基碳纤维的制备技术,由此揭开了全球碳纤维产业发展的序幕。国际上PAN基碳纤维的生产于上世纪60年开始起步,日本、英国是最先开启实验室研发碳纤维,而美国于当时专注攻克粘胶基碳纤维,所以在此方面发展稍晚一步

12、。进入70年代,日、英、美三国企业开始频繁合作,开始工程化技术的研发以及应用领域的开拓,成功将碳纤维应用在高尔夫球杆、钓鱼竿等方面,同时碳纤维复合材料在航天航空结构上也取得突破,还实现了批量生产。90年代开始,碳纤维产业发展提速,行业正式进入了工业化时代,单线产能突破千吨/年。日本东丽公司作为行业翘楚,早在当时就基本完成了现有绝大部分产品型号的研发和生产,包括初期的T300、中期的T800和T1000、末期的M60J。进入21世纪之后,碳纤维的应用不再仅限于军工和宇航,风电、汽车等领域的应用也在不断扩大。总的来说,由于欧美日企业很早就开始研发碳纤维技术,并将技术与产业发展相融合,具备先发优势,

13、占据很大一部分的市场份额,对高端碳纤维的市场更是形成了垄断。目前,世界碳纤维技术主要由日本企业掌握,其生产的碳纤维无论是质量还是数量均处于世界领先地位。日本的三家碳纤维企业(东丽、东邦、三菱)占据全球PAN基碳纤维约50%的市场份额,日本东丽则是全球高性能碳纤维的龙头企业。国内发展稍有停滞,如今积极发展有望缩小差距。我国PAN基碳纤维的研究可以追溯到1962年,与日本同时起步。由于国外知名碳纤维企业囿于“巴黎统筹条约”的限制,不愿出售相关的生产设备,仅有英国RK公司愿意出售极小产量的中试线,中国碳纤维行业于上世纪90年代一直处于停滞状态,直到进入新世纪之后,科技部设立碳纤维专项,将碳纤维列入8

14、63计划新材料领域,才算是恢复发展。2008年,以国有企业为主的大量工业企业涌入碳纤维行业,但大多企业在一些关键技术上毫无突破,生产线运行效率较低且产品质量不稳定。2010年开始,碳纤维行业格局发生优化,优胜劣汰,从原先的40多家企业减少到了十多家企业。随着下游应用的拓展,碳纤维的需求逐步提升,倒逼上游企业开始大力发展,一些企业在工业级大丝束碳纤维的生产工艺上取得突破,具备产业链自主化能力的产品类型。二、 技术取得突破,为碳纤维国产替代奠定基础完整的碳纤维产业链包含从原油到终端应用的制造过程。上游企业从石油、天然气等化石燃料中制取丙烯,并经过氨氧化得到丙烯腈。丙烯腈通过聚合制成纺丝原液,然后纺

15、丝成型得到聚丙烯腈(PAN)原丝。原丝需要经过多段氧化炉制成预氧丝,随后在氮气的保护下经过低温和高温碳化后得到碳纤维。碳纤维可以制成碳纤维织物和碳纤维预浸料,也可以与树脂、陶瓷等材料相结合制成碳纤维复合材料,最后由各种成型工艺得到下游应用需要的最终成品。原丝制备是碳纤维产业链的核心环节。碳纤维原丝的质量和成本很大程度上决定了碳纤维的性能和成本,PAN原丝需要经过预氧化、碳化转化成碳纤维,这是一个复杂的过程,碳纤维的缺陷主要源于各环节的误差,其中90%的缺陷是从原丝遗传而来。如果原丝的分子结构和聚集态结构存在不同程度的缺陷,将会对碳纤维的质量和性能造成严重的影响。碳纤维的强度显著依赖于原丝的微观形态结构及致密性,线密度越低,原丝中存在的缺陷越少,提高均一性有助于获取高强度的碳纤维。原丝制备的技术壁垒和工艺差别主要在纺丝环节。碳纤维原丝的工艺主要包含聚合、制胶、纺丝三个过程。经过长期的

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 商业/管理/HR > 商业计划书

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号