非线性3弹塑性分析报告

上传人:枫** 文档编号:460015481 上传时间:2023-01-08 格式:DOC 页数:9 大小:81KB
返回 下载 相关 举报
非线性3弹塑性分析报告_第1页
第1页 / 共9页
非线性3弹塑性分析报告_第2页
第2页 / 共9页
非线性3弹塑性分析报告_第3页
第3页 / 共9页
非线性3弹塑性分析报告_第4页
第4页 / 共9页
非线性3弹塑性分析报告_第5页
第5页 / 共9页
点击查看更多>>
资源描述

《非线性3弹塑性分析报告》由会员分享,可在线阅读,更多相关《非线性3弹塑性分析报告(9页珍藏版)》请在金锄头文库上搜索。

1、word弹塑性分析在这一册中,我们将详细地介绍由于塑性变性引起的非线性问题-弹塑性分析,我们的介绍人为以下几个方面: 什么是塑性 塑性理论简介 ANSYS程序中所用的性选项 怎样使用塑性 塑性分析练习题什么是塑性塑性是一种在某种给定载荷下,材料产生永久变形的材料特性,对大多的工程材料来说,当其应力低于比例极限时,应力一应变关系是线性的。另外,大多数材料在其应力低于屈服点时,表现为弹性行为,也就是说,当移走载荷时,其应变也完全消失。由于屈服点和比例极限相差很小,因此在ANSYS程序中,假定它们一样。在应力一应变的曲线中,低于屈服点的叫作弹性局部,超过屈服点的叫作塑性局部,也叫作应变强化局部。塑性

2、分析中考虑了塑性区域的材料特性。路径相关性:即然塑性是不可恢复的,那么这种问题的就与加载历史有关,这类非线性问题叫作与路径相关的或非保守的非线性。路径相关性是指对一种给定的边界条件,可能有多个正确的解内部的应力,应变分布存在,为了得到真正正确的结果,我们必须按照系统真正经历的加载过程加载。率相关性:塑性应变的大小可能是加载速度快慢的函数,如果塑性应变的大小与时间有关,这种塑性叫作率无关性塑性,相反,与应变率有关的性叫作率相关的塑性。大多的材料都有某种程度上的率相关性,但在大多数静力分析所经历的应变率X围,两者的应力应变曲线差异不大,所以在一般的分析中,我们变为是与率无关的。工程应力,应变与真实

3、的应力、应变:塑性材料的数据一般以拉伸的应力应变曲线形式给出。材料数据可能是工程应力与工程应变,也可能是真实应力P/A与真实应变。大应变的塑性分析一般采用真实的应力,应变数据而小应变分析一般采用工程的应力、应变数据。什么时候激活塑性:当材料中的应力超过屈服点时,塑性被激活也就是说,有塑性应变发生。而屈服应力本身可能是如下某个参数的函数。 温度 应变率 以前的应变历史 侧限压力 其它参数塑性理论介绍在这一章中,我们将依次介绍塑性的三个主要方面: 屈服准如此 流动准如此 强化准如此屈服准如此:对单向受拉试件,我们可以通过简单的比拟轴向应力与材料的屈服应力来决定是否有塑性变形发生,然而,对于一般的应

4、力状态,是否到达屈服点并不是明显的。屈服准如此是一个可以用来与单轴测试的屈服应力相比拟的应力状态的标量表示。因此,知道了应力状态和屈服准如此,程序就能确定是否有塑性应变产生。屈服准如此的值有时候也叫作等效应力,一个通用的屈服准如此是Von Mises 屈服准如此,当等效应力超过材料的屈服应力时,将会发生塑性变形。可以在主应力空间中画出Mises屈服准如此,见图31。在3D中,屈服面是一个以为轴的圆柱面,在2D中,屈服面是一个椭圆,在屈服面内部的任何应力状态,都是弹性的,屈服面外部的任何应力状态都会引起屈服。注意:静水压应力状态不会导致屈服:屈服与静水压应力无关,而只与偏差应力有关,因此,的应力

5、状态比的应力状态接近屈服。Mises屈服准如此是一种除了土壤和脆性材料外典型使用的屈服准如此,在土壤和脆性材料中,屈服应力是与静水压应力侧限压力有关的,侧限压力越高,发生屈服所需要的剪应力越大。流动准如此:流动准如此描述了发生屈服时,塑性应变的方向,也就是说,流动准如此定义了单个塑性应变分量,等随着屈服是怎样开展的。一般来说,流动方程是塑性应变在垂直于屈服面的方向开展的屈服准如此中推导出来的。这种流动准如此叫作相关流动准如此,如果不用其它的流动准如此从其它不同的函数推导出来。如此叫作不相关的流动准如此。强化准如此:强化准如此描述了初始屈服准如此随着塑性应变的增加是怎样开展的。一般来说,屈服面的

6、变化是以前应变历史的函数,在ANSYS程序中,使用了两种强化准如此。等向强化是指屈服面以材料中所作塑性功的大小为根底在尺寸上扩X。对Mises屈服准如此来说,屈服面在所有方向均匀扩X。见图3-2。图3-2 等向强化时的屈服面变化图由于等向强化,在受压方向的屈服应力等于受拉过程中所达到的最高应力。随动强化假定屈服面的大小保持不变而仅在屈服的方向上移动,当某个方向的屈服应力升高时,其相反方向的屈服应力应该降低。见图3-3。图3-3 随动强化时的屈服面变化图在随动强化中,由于拉伸方向屈服应力的增加导致压缩方向屈服应力的降低,所以在对应的两个屈服应力之间总存一个的差值,初始各向同性的材料在屈服后将不再

7、是向同性的。塑性选项 ANSYS程序提供了多种塑性材料选项,在此主要介绍四种典型的材料选项可以通过激活一个数据表来选择这些选项。 经典双线性随动强化 BKIN 双线性等向强化BISO 多线性随动强化 MKIN 多线性等向强化MISO经典的双线性随动强化BKIN使用一个双线性来表示应力应变曲线,所以有两个斜率,弹性斜率和塑性斜率,由于随动强化的Vonmises 屈服准如此被使用,所以包含有鲍辛格效应,此选项适用于遵守Von Mises 屈服准如此,初始为各向同性材料的小应变问题,这包括大多数的金属。需要输入的常数是屈服应力和切向斜率,可以定义高达六条不同温度下的曲线。注意: 使用MP命令来定义弹

8、性模量 弹性模量也可以是与温度相关的 切向斜率Et不可以是负数,也不能大于弹性模量在使用经典的双线性随动强化时,可以分下面三步来定义材料特性。1、定义弹性模量2、激活双线性随动强化选项3、使用数据表来定义非线性特性双线性等向强化BIS0,也是使用双线性来表示应力应变曲线,在此选项中,等向强化的Von Mises 屈服准如此被使用,这个选项一般用于初始各向同性材料的大应变问题。需要输入的常数与BKIN选项一样。多线性随动强化MKIN使用多线性来表示应力应变曲线,模拟随动强化效应,这个选项使用Von Mises 屈服准如此,对使用双线性选项BKIN不能足够表示应力应变曲线的小应变分析是有用的。需要

9、的输入包括最多五个应力应变数据点用数据表输入,可以定义五条不同温度下的曲线。在使用多线性随动强化时,可以使用与BKIN一样的步骤来定义材料特性,所不同的是在数据表中输入的常数不同,下面是一个用命令流定义多线性随动强化的标准输入。MPTEMP,10,70 MPDATA,EX,3,30ES,25ES TB,MK2N,3 TBTEMP,STRA2N TBDATA,0.01,0.05,0.1 TBTEMP,10 TBDATA,30000,37000,38000 TBTEMP,70 TBDATA,225000,31000,33000多线性等向强化MISO使用多线性来表示使用Von Mises屈服准如此的

10、等向强化的应力应变曲线,它适用于比例加载的情况和大应变分析。需要输入最多100个应力应变曲线,最多可以定义20条不同温度下的曲线。其材料特性的定义步骤如下:1、定义弹性模量2、定义MISO数据表3、为输入的应力应变数据指定温度值4、输入应力应变数据5、画材料的应力应变曲线与MKIN 数据表不同的是,MISO的数据表对不同的温度可以有不同的应变值,因此,每条温度曲线有它自己的输入表。怎样使用塑性在这一章中,我们将介绍在程序中怎样使用塑性,重点介绍以下几个方面 可用的ANSYS 输入 ANSYS 输出量 使用塑性的一些原如此 加强收敛性的方法 查看塑性分析的结果ANSYS 输入:当使用TB命令选择

11、塑性选项和输入所需常数时,应该考虑到: 常数应该是塑性选项所期望的形式,例如,我们总是需要应力和总的应变,而不是应力与塑性应变。 如果还在进展大应变分析,应力应变曲线数据应该是真实应力真实应变。对双线性选项BKIN,BISO,输入常数和可以按下述方法来决定,如果材料没有明显的屈服应力,通常以产生0.2%的塑性应变所对应的应力作为屈服应力,而可以通过在分析中所预期的应变X围内来拟合实验曲线得到。其它有用的载荷步选项: 使用的子步数使用的时间步长,既然塑性是一种与路径相关的非线性,因此需要使用许多载荷增量来加载 激活自动时间步长 如果在分析所经历的应变X围内,应力应变曲线是光滑的,使用预测器选项,

12、这能够极大的降低塑性分析中的总体迭代数。输出量在塑性分析中,对每个节点都可以输出如下量:EPPL塑性应变分量,等等EPEQ累加的等效塑性应变SEPL根据输入的应力应变曲线估算出的对于EPEQ的等效应力HPRES静水压应力PSV塑性状态变量PLWK单位体积内累加的塑性功上面所列节点的塑性输出量实际上是离节点最近的那个积分点的值。如果一个单元的所有积分点都是弹性的EPEQ0,那么节点的弹性应变和应力从积分点外插得到,如果任一积分点是塑性的EPEQ0,那么节点的弹性应变和应力实际上是积分点的值,这是程序的缺省情况,但可以人为的改变它。程序使用中的一些根本原如此:下面的这些原如此应该有助于可执行一个准

13、确的塑性分析1、 所需要的塑性材料常数必须能够足以描述所经历的应力或应变X围内的材料特性。2、 缓慢加载,应该保证在一个时间步内,最大的塑性应变增量小于5%,一般来说,如果Fy是系统刚开始屈服时的载荷,那么在塑性X围内的载荷增量应近似为: 0.05*Fy对用面力或集中力加载的情况 Fy对用位移加载的情况3、 当模拟类似梁或壳的几何体时,必须有足够的网格密度,为了能够足够的模拟弯曲反响,在厚度方向必须至少有二个单元。4、 除非那个区域的单元足够大,应该防止应力奇异,由于建模而导致的应力奇异有: 单点加载或单点约束 凹角 模型之间采用单点连接 单点耦合或接触条件5、 如果模型的大局部区域都保持在弹

14、性区内,那么可以采用如下方法来降低计算时间: 在弹性区内仅仅使用线性材料特性不使用TB 命令 在线性局部使用子结构加强收敛性的方法:如果不收敛是由于数值计算导致的,可以采用下述方法来加强问题的收敛性:1、使用小的时间步长2、 如果自适应下降因子是关闭的,打开它,相反,如果它是打开的,且割线刚度正在被连续地使用,那么关闭它。3、 使用线性搜索,特别是当大变形或大应变被激活时4、 预测器选项有助于加速缓慢收敛的问题,但也可能使其它的问题变得不稳定。5、可以将缺省的牛顿拉普森选项转换成修正的MODI或初始刚度INIT牛顿拉普森选项,这两个选项比全牛顿拉普森选项更稳定需要更的迭代,但这两个选项仅在小挠度和小应变塑性分析中有效。查看结果1、 感兴趣的输出项例如应力,变形,支反力等等对加载历史的响应应该是光滑的,一个不光滑的曲线可能明确使用了太大的时间步长或太粗的网格。2、 每个时间步长内的塑性应变增量应该小于5,这个值在输出文件中以“Max plastic Strain Step输出,也可以使用POST26来显示这个值Main Menu:Time Hist PostproDefine Variables。3、 塑性应变等值线应该是光滑的,通过任一单元的梯度不应该太大。4、 画出某点的应力应变图,应力是指输出量SEQVMises 等效应力,总应变由累加的塑性应

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 建筑/环境 > 施工组织

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号