航空涡扇发动机的工作原理

上传人:ni****g 文档编号:457949351 上传时间:2022-09-01 格式:DOCX 页数:4 大小:15.62KB
返回 下载 相关 举报
航空涡扇发动机的工作原理_第1页
第1页 / 共4页
航空涡扇发动机的工作原理_第2页
第2页 / 共4页
航空涡扇发动机的工作原理_第3页
第3页 / 共4页
航空涡扇发动机的工作原理_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

《航空涡扇发动机的工作原理》由会员分享,可在线阅读,更多相关《航空涡扇发动机的工作原理(4页珍藏版)》请在金锄头文库上搜索。

1、发表于:2014-01-21 21:57:40上作者江山红级别:上将红红发短信加好友更多作品积分:118791航空喷气发动机主要有两种,一种是涡喷发动机,一种是锅扇发动机。在这里主要介绍大家关心的涡扇发动机 的工作原理。涡扇发动机是喷气发动机的一个分支,从血缘关系上来说,涡扇发动机应是涡喷发动机的变种。从结构上看, 涡扇发动机是在涡喷发动机之前加装了风扇。这几叶风扇却把涡喷发动机与涡扇发动机严格的区分开来。正是这 几叶风扇,让涡扇发动机青出于蓝而胜于蓝。研制涡扇发动机,首先是要确定它的总体结构。简单的讲,主要是发动机的转子数目多少。目前涡扇发动机所 采用的总体结构无非是三种,一是单转子、二是双

2、转子、三是三转子。其中单转子的结构最为简单,整个发动机 只有一根轴,风扇、压气机、涡轮全都在这一根轴上。结构简单尽管研制难度低,省钱!但要付出性能差的代价。从理论上讲:单转子结构的涡扇发动机的压气机,可以作成任意多的级数,以期达到一定的增压比。可是由于 单转子的结构限制,使其风扇、低压压气机、高压压气机、低压涡轮、高压涡轮必须都安装在同一根主轴之上, 在工作时,它们就必须要保持相同的转速,问题也跟着出来了。当单转子的发动机在工作时,如果其转速突然下 降时,压气机的高压部分,就会因为得不到足够的转速,而效率严重下降;在高压部分的效率下降的同时,压气 机低压部分的载荷就会急剧上升,当低压压气机部分

3、超载运行时,就会引起发动机的振喘。在正常的飞行中,发 动机发生振喘是决对不允许的。因为发动机发生振喘,会严重危及飞机的安全。为了解决低压部分在工作中的过 载,只好在压气机前加装导流叶片和在压气机的中间级上进行放气,即放掉一部分以经被增压的空气来减少压气 机低压部分的载荷。但这样一来发动机的效率就会大打折扣,而且这种放掉增压气的作法在高增压比的压气机上 的作用也不是十分的明显。更要命的问题发生在风扇上,由于风扇必须和压气机同步,受压气机的高转数所限, 单转子涡扇发动机只能选用比较小的函道比。为了提高压气机的工作效率和减少发动机在工作中的振喘,人们想到了用双转子来解决问题,即让发动机的低 压压气机

4、和高压压气机工作在不同的转速之下。这样低压压气机与低压涡轮联动形成了低压转子,高压压气机与 高压涡轮联动形成了高压转子。低压转子的转速可以相对低一些。因为压缩作用,在压气机内的空气温度升高, 其作用力随着空气温度的升高而增大。高压转子的转速可以设计的相对高一些,转速提高了,其高压转子的直径 就可以做得小一些,这样在双转子的喷气发动机上就形成了一个“蜂腰”,而发动机的一些附属设备比如燃油调节 器、起动装置等等就可以装在这个“蜂腰”的位置上,以减少发动机的迎风面积降低飞行阻力。一般来说双转子发 动机的的高压转子的重量比较轻,起动惯性小,所以人们在设计双转子发动机的时候都只把高压转子设计成用启 动机

5、来驱动,这样和单转子发动机相比双转子的启动也比较容易,启动的能量也要求较小,启动设备的重量也就 相对降低。然而双转子结构的涡扇发动机也并不是完美的。在双转子结构的涡扇发动机上,由于风扇要和低压压气机联 动,风扇和低压压气机就必须要互相将就一下对方。风扇为将就压气机而必需提高转数,这样直径相对比较大的 风扇所承受的离心力和叶尖速度也就要大,巨大的离心力就要求风扇的重量不能太大,在风扇的重量不能太大的 情况下风扇的叶片长度也就不能太长,风扇的直径小下来了,函道比自然也上不去,而实践证明函道比越高的发 动机推力也就越大,而且也相对省油。而低压压气机为了将就风扇也不得不降低转数,降低了压气机的转数压气

6、机的工作效率自然也就上不去,单级增压比降低的后果是不得不增加压气机风扇的级数来保持一定的总增压比。 这样压气机的重量就很难得以下降。为了解压气机和风扇转数上的矛盾。人们很自然的想到了三转子结构,所谓三转子就是在二转子发动机上又 了多了一级风扇转子。这样风扇、高压压气机和低压压气机都自成一个转子,各自都有各自的转速。三个转子之 间没有相对固定的机械联接。如此一来,风扇和低压转子就不用相互的将就行事,而是可以各自在最为合试的转 速上运转。设计师们就可以相对自由的来设计发动机风扇转速、风扇直径以及函道比。而低压压气机的转速也可 以不受风扇的肘制,低压压气机的转速提高之后压气的的效率提高、级数减少、重

7、量减轻,发动机的长度又可以 进一步缩小。但和双转子发动机相比,三转子结构的发动机的结构进一步变的复杂。三转子发动机有三个相互套在一起的 共轴转子,因而所需要的轴承支点几乎比双转子结构的发动机多了一倍,而且支撑结构也更加的复杂,轴承的润 滑和压气机之间的密闭也更困难。三转子发动机比双转子发动机多了很多工程上的难题,可是英国的罗罗公司还 是对他情有独钟,因为在表面的困难背后还有着巨大的好处,罗罗公司的RB-211上用的就是三转子结构。转子 数量上的增加换来了风扇、压气机、涡轮的简化。三转子RB-211与同一技术时期推力同级的双转子的JT-9D相比:JT-9D的风扇页片有46片,而RB-211只有

8、33片;压气机、涡轮的总级数JT-9D有22级,而RB-211只有19级;压气机叶片JT-9D有1486片,RB-211只 有826片;涡轮转子叶片RB211也要比JT9D少,前者是522片,而后者多达708片;但从支撑轴承上看,RB- 211 有八个轴承支撑点,而JT9D只有四个。涡扇发动机的外函推力完全来自于风扇所产生的推力,风扇的的好坏直接的影响到发动机的性能,这一点在 高函道比的涡扇发动机上由是。涡扇发动机的风扇发展也经历了几个过程。在涡扇发动机之初,由于受内函核心 机功率和风扇材料的机械强度的限制,涡扇发动机的函道比不可能作的很大,比如在涡扇发动机的三鼻祖中,其 函道比最大的CJ80

9、5-23也不过只有1.5而以,而且CJ805-23所采用的风扇还是后独一无二的后风扇。在前风扇设计的二款发动机中JT3D的函道比大一些达到了 1.37。达到如此的函道比,其空气总流量比也比其原 型J-57的空气流量大了 271%。空气流量的加大发动机的迎风面积也随之变大。风扇的叶片也要作的很长JT3D 的一级风扇的叶片长度为418.2毫米。而J57上的最长的压气机叶片也就大约有二百毫米左右。当风扇叶片变的 细长之后,其弯曲、扭转应力加大,在工作中振动的问题也突现了出来。为了解决细长的风扇叶片所带来的麻烦, 普惠公司采用了阻尼凸台的方法来减少风扇叶片所带来的振动。凸台位于距风扇叶片根处大约百分之

10、六十五的地 方。JT3D发动机的风扇部分装配完成之后,其风扇叶上的凸台就会在叶片上连成一个环形的箍。当风扇叶片运 转时,凸台与凸台之间就会产生摩擦阻尼以减少叶片的振动。加装阻尼凸台之后其减振效果是明显的,但其阻尼 凸台的缺点也是明显的。首先他增加了叶片的重量,其次他降底了风扇叶片的效率。而且如果设计不当的话当空 气高速的流过这个凸台时会发生畸变,气流的畸变会引发叶片产生更大的振动。而且如果采用这种方法由于叶片 的质量变大,在发动机运转时风扇本身会产生更大的离心力。这样的风扇叶片很难作的更长,没有更长的叶片也 就不会有更高的函道比。而且细长的风扇叶片的机械强度也很低,在飞机起飞着陆过程中,发动机

11、一但吸入了外 来物,比如飞鸟之类,风扇的叶片会更容易被损坏,在高速转动中折断的风扇叶片会像子弹一样打穿外函机匣酿 成大祸。解决风扇难题一个比较完美的办法是加大风扇叶片的宽度和厚度。这样叶片就可以获得更大的强度以减 少振动和外来物打击的损害,而且如果振动被减少到一定程度的话阻尼凸台也可以取消。但更厚重的扇叶其运转 时的离心力也将是巨大的。这样就必需要加强扇叶和根部和安装扇叶的轮盘。但航空发动机负不起这样的重量代 价。风扇叶片的难题大大的限制了涡扇发动机的发展。更高的转数、高大的机械强度、更长的叶片、更轻的重量这样的一个多难的问题最终在八十年代初得到了解 决。1984年10月,RB211-535E

12、4挂在波音七五七的翼下投入了使用。它是一台有着跨时代意义的涡扇发动机。让 它身负如此之名的就是他的风扇。罗罗公司用了创造性的方法解决了困扰大函道比涡扇发动机风扇的多难问题。 新型发动机的风扇叶片叫作“宽弦无凸肩空心夹层结构叶片二故名思意,新型风扇的叶片采用了宽弦的形状来加 大机械强度和空心结构以减少重量。新型的空心叶片分成三个部分:叶盆、叶背、和叶芯。它的叶盆和叶背分别是由两块钛合金薄板制成,在两块薄板之间是同样用钛合金作成的蜂窝状结构的“芯”。通过活性扩散焊接的方法 将叶盆、叶背、叶芯连成一体。新叶片以极轻的重量获得了极大的强度。这样的一块钛合金三明治一下子解决了 困扰航空动力工业几十年的大

13、难题。新型风扇不光是重量轻、强度大,而且因为他取消了传统细长叶片上的阻尼凸台他的工作效率也要更高一些。 风扇扇叶的数量也减少了将近三分之一,RB211-535E4发动机的风扇扇叶只有二十四片。1991年7月15日新型宽弦叶片经受了一次重大的考验。印度航空公司的一架A320在起飞阶段其装备了宽弦叶 片的V-2500涡扇发动机吸入了一只5.44千克重的印度秃鹫!巨鸟以差不多三百公里的时速迎头撞到了发动机的 最前端部件-风扇上!可是发动机在遭到如此重创之后仍在正常工作,飞机安全的降落了。在降落之后,人们发 现V-2500的22片宽弦风扇中只有6片被巨大的冲击力打变了形,没有一片叶片发生折断。发动机只

14、在外场进行 了更换叶片之后就又重新投入了使用。这次意外的撞击证明了“宽弦无凸肩空心夹层结构叶片”的巨大成功。解决宽弦风扇的问题并不是只有空心结构这一招。实际上,当风扇的直径进一步加大时,空心结构的风扇扇 叶也会超重。比如在波音777上使用的GE-90涡扇发动机,其风扇的直径高达3.142米。即使是空心蜂窝结构的 钛合金叶片也会力不从心。于是通用动力公司便使用先进的增强环氧树脂碳纤维复合材料来制造巨型的风扇扇 叶。碳纤维复合材料所制成的风扇扇叶结构重量极轻,而强度却是极大。可是在当复合材料制成的风扇在运转时 遭到特大鸟的撞击会发生脱层现像。为了进一步的增大GE-90的安全系数,通用动力公司又在风

15、扇的前缘上包覆 了一层钛合金的蒙皮,在其后缘上又用“凯夫拉”进行缝合加固。如此以来GE-90的风扇可谓万无一失。当高函道比涡扇发动机的风扇从传统的细长窄弦叶片向宽弦叶片过渡的时候,风扇的级数也经历了一场从多 级风扇到单级风扇的过渡。在涡扇发动机诞生之初,由于风扇的单级增压比比较低只能采用多级串联的方式来提 高风扇的总增压比。比如JT3D的风扇就为两级,其平均单级增压比为1.32,通过两级串联其风扇总增压比达到 了 1.74。多级风扇与单级风扇相比几乎没有优点,它重量大、效率低,其实它是在涡扇发动机的技主还不十分成 熟的时候一种无耐的选择。随着风扇单级增压比的一步步提高,现如今在中、高函道比的涡

16、扇发动机上单级风扇 以是一统天下。比如在GE-90上使用的单级风扇其增压比高达1.65,如此之高的单级增压比以经再没有必要来串 接第二级风扇。但是在战斗机上使用的低函道比涡扇发动机还在使用着多级风级的结构。比如在F-15A上使用的F100-PW- 100涡扇发动机就是由三级构成,其总增压比达到了 2.95。低函道涡扇发动机取如此高的风扇增压比其实是风扇、 低压压气机合二为一结果。在战斗机上使用的低函道比涡扇发动机为了减少重量它的双转子其实是由风扇转子和 压气机转子组成的双转子结构。受战斗机的机内容积所限,采用大空气流量的高函道比涡扇发动机是不现实的, 但为了提高推力只能提发动机的出口压力,再者风扇不光要提供全部的外函推力而且还要部分的承担压气机的任 务,所以风扇只能采用比较高的增压比。其实低函道比的涡扇发动机彩用多级风扇也是一种无耐之举,如果风扇的单级增压比能达到3左右多级风扇 的结构就将不会再出现。如果想要风扇的单级增压比达到3一级只能是进一步提高风扇的的

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号