课程设计论文逻辑无环流可逆直流调速系统设计与研究主电路设计

上传人:cl****1 文档编号:457797305 上传时间:2023-03-10 格式:DOC 页数:25 大小:607KB
返回 下载 相关 举报
课程设计论文逻辑无环流可逆直流调速系统设计与研究主电路设计_第1页
第1页 / 共25页
课程设计论文逻辑无环流可逆直流调速系统设计与研究主电路设计_第2页
第2页 / 共25页
课程设计论文逻辑无环流可逆直流调速系统设计与研究主电路设计_第3页
第3页 / 共25页
课程设计论文逻辑无环流可逆直流调速系统设计与研究主电路设计_第4页
第4页 / 共25页
课程设计论文逻辑无环流可逆直流调速系统设计与研究主电路设计_第5页
第5页 / 共25页
点击查看更多>>
资源描述

《课程设计论文逻辑无环流可逆直流调速系统设计与研究主电路设计》由会员分享,可在线阅读,更多相关《课程设计论文逻辑无环流可逆直流调速系统设计与研究主电路设计(25页珍藏版)》请在金锄头文库上搜索。

1、1 逻辑无环流可逆直流调速系统简介1.1 逻辑无环流可逆直流调速系统工作原理 逻辑无环流可逆直流调速系统主电路如图 1.1 所示,两组桥在任何时刻只有一组投入工作(另一组关断),所以在两组桥之间就不会存在环流。但当两组桥之间需要切换时,不能简单的把原来工作着的一组桥的触发脉冲立即封锁,而同时把原来封锁着的一组桥立即开通,因为已经导通晶闸管并不能在触发脉冲取消的一瞬间立即被关断,必须待晶闸管承受反压时才能关断。如果对两组桥的触发脉冲的封锁和开放式同时进行,原先导通的那组桥不能立即关断,而原先封锁着的那组桥已经开通,出现两组桥同时导通的情况,因没有环流电抗器,将会产生很大的短路电流,把晶闸管烧毁。

2、为此首先应是已导通的的晶闸管断流,要妥当处理主回路中的电感储存的一部分能量回馈给电网,其余部分消耗在电机上,直到储存的能量释放完,主回路电流变为零,使原晶闸管恢复阻断能力,随后再开通原来封锁着的那组桥的晶闸管,使其触发导通。 图1.1 逻辑无环流可逆直流调速系统主电路 图1.2 逻辑无环流可逆调速系统原理图ASR速度调节器ACR1ACR2正反组电流调节器GTF、GTR正反组整流装置VF、VR正反组整流桥DLC无环流逻辑控制器HX推装置TA交流互感器TG测速发电机M工作台电动机LB电流变换器AR反号器GL过流保护环节这种逻辑无环流系统有一个转速调节器ASR,一个反号器AR,采用双电流调节器1AC

3、R和2ACR,双触发装置GTF和GTR结构。主电路采用两组晶闸管装置反并联线路,由于没有环流,不用再设置环流电抗器,但是为了保证稳定运行时的电流波形的连续,仍应保留平波电抗器,控制线路采用典型的转速电流双闭环系统,1ACR用来调节正组桥电流,其输出控制正组触发装置GTF;2ACR调节反组桥电流,其输出控制反组触发装置GTR,1ACR的给定信号经反号器AR作为2ACR的给定信号,这样可使电流反馈信号的极性在正反转时都不必改变,从而可采用不反映极性的电流检测器,在逻辑无环流系统中设置的无环流逻辑控制器DLC,这是系统中关键部件。它按照系统的工作状态,指挥系统进行自动切换,或者允许正组触发装置发出触

4、发脉冲而封锁反组,或者允许反组触发装置发出触发脉冲而封锁正组。在任何情况下,决不允许两组晶闸管同时开放,确保主电路没有产生环流的可能。1.2 无环流逻辑装置的组成在无环流控制系统中,反并联的两组整流桥需要根据所要求的电枢电流极性来选择其中一组整流桥运行,而另一组整流桥触发脉冲是被封锁的。两组整流桥的切换是在电动机转矩极性需要反向时由逻辑装置控制进行的。其切换顺序可归纳如下:由于转速给定变化或负载变动,使电动机应产生的转矩极性反向。由转速调节器输出反映这一转矩的极性,并由逻辑装置对该极性进行判断,然后发出切换开始的指令。使导通侧的整流桥(例如正组桥)的电流迅速减小到零。由零电流检测器得到零电流信

5、号后,经延时,确认电流实际值为零,封锁原导通侧整流桥的触发脉冲。由零电流检测器得到零电流信号后,经延时,确保原导通侧整流桥晶闸管完全阻断后,开放待工作侧整流桥(例如反组桥)的触发脉冲。电枢内流过与切换前反方向的电流,完成切换过程。根据逻辑装置要完成的任务,它由电平检测、逻辑判断、延时电路和联锁保护电路四个基本环节组成,逻辑装置的功能和输入输出信号如图1.3所示。 图1.3 无环流逻辑控制环节DLC其输入为电流给定或转矩极性鉴别信号和零电流检测信号,输出是控制正组晶闸管触发脉冲封锁信号和反组晶闸管触发脉冲封锁信号。1.3 无环流逻辑装置的设计 电平检测器逻辑装置的输入有两个:一是反映转矩极性信号

6、的转速调节器输出,二是来自电流检测装置反映零电流信号的,他们都是连续变化的模拟量,而逻辑运算电路需要高、低电位两个状态的数字量。电平检测器的任务就是将模拟量转换成数字量,也就是转换成“0”状态(将输入转换成近似为输出)或“1”状态(将输入转换成近似为输出)。采用射极偶合触发器作电平检测器。为了提高信号转换的灵敏度,前面还加了一级差动放大和一级射极跟随器。其原理图见图1.4。图1.4 电平检测器原理图电平检测器的输入输出特性如图5所示,具有回环特性。由于转速调节器的输出和电流检测装置输出都具有交流分量,除入口有滤波外,电平检测需要具有一定宽度的回环特性,以防止由于交流分量使逻辑装置误动作,本系统

7、电平检测回环特性的动作电压,释放电压。调整回环的宽度可通过改变射极偶合触发器的集电极电阻实现。 图1.5 电平检测器输入输出特性转矩极性鉴别器的输入信号为转速调节器的输出,其输出为。电机正转时为负,为低电位(“0”态),反转时为正,为高电位(“1”态)。零电流检测器的输入信号为电流检测装置的零电流信号,其输出为。有电流时为正,为高电位(“1”态),无电流时为0,为低电位(“0”态)。逻辑运算电路的输入是转速极性鉴别器的输出和零电流检测器输出。系统在各种运行状态时,和有不同的极性状态(“0”态或“1”态),根据运行状态的要求经过逻辑运算电路切换其输出去封锁脉冲信号的状态(“0”态或“1”态),由

8、于采用的是锗管触发器,当封锁信号为正电位(“1”态)时脉冲被封锁,低电位(“0”态)时脉冲开放。利用逻辑代数的数学工具,可以设计出具有一定功能的逻辑运算电路。设正转时为负,为“0”;反转时为正,为“1”;有电流时为正,为“1”;无电流时为负,为“0”。代表正组脉冲封锁信号,为“1”时脉冲封锁,为“0”时脉冲开放。代表反组脉冲封锁信号,为“1”时脉冲封锁,为“0”时脉冲开放。、表示“1”,、表示“0”。按系统运行状态,可列出各量要求的状态,如表1.1所示,并根据封锁条件列出逻辑代数式。运 行 状 态 正向起动,I=00001 正向运行,I有0101 正向制动,I有1101 正向制动,I=0101

9、0 反向起动,I=01010 反向运行,I有1110 反向制动,I有0110 反向制动,I00001表1.1 逻辑判断电路各量要求的状态 根据正组封锁条件: (1-1)根据反组封锁条件: (1-2)逻辑运算电路采用分立元件,用或非门电路较简单,故将上述(1-1)式和(1-2)式最小化,最后化成或非门的形式。 (1-3) (1-4)根据(1-3)、(1-4)式可画得逻辑运算电路,如图1.6所示,它由四个或非门电路组成。依靠它来保证两组整流桥的互锁,并自动实现零电流时相互切换。现举例说明其切换过程,例如,整流装置原来正组工作,这时逻辑电路各点状态如图1.6中“1”、“0”所示。图1.6 逻辑运算电

10、路图1.7 或非门电路现在要求整流装置从正组切换到反组,首先是转矩极性信号改变极性,由“0”变到“1”,在正组电流未衰减到0以前,逻辑电路的输出仍维持原状(为“0”,正组开放。为“1”,反组封锁)。只有当正组电流衰减到零,零电流检测器的状态改变后,逻辑电路输出才改变状态,实现零电流切换,这是逻辑电路各点状态如图1.6所示。或非门电路如图1.7所示。延时电路 前面的逻辑运算电路保证零电流切换,但仅仅采用零电流切换是不够的。因为零电流检测装置的灵敏度总是有限的,零电流检测装置变成“0”态的瞬间,不一定原来开放组的晶闸管已经断流。因此必须在切换过程中设置两段延时即封锁延时和开放延时,避免由于正反组整

11、流装置同时导通而造成短路。根据这个要求,逻辑装置在逻辑电路后面接有延时电路。图1.8 延时电路延时电路如图1.8所示,其工作原理如下:当延时电路输入为“0”时,输出亦为“0”态(截止、导通),相应的整流桥脉冲开放。当输入由“0”变为“1”时,电容C经充电,经一定延时后,导通,截止,即输出由“0”延时变“1”。相应的整流桥脉冲延时封锁。其延时时间由决定,这里整定为。当输入出“1”变“0”时,电容C的电荷要经过和基射极回路放电,经一定延时后,截止,导通,即输出由“1”延时变“0”。相应的整流桥脉冲延时开放。其延时时间由参数决定,这里整定为,这样就满足了“延时封锁”、“延时开放”的要求。 逻辑保护

12、逻辑电路正常工作时,两个输出端总是一个高电位,一个低电位,确保任何时候两组整流一组导通,另一组则封锁。但是当逻辑电路本身发生故障,一旦两个输出端均出现低电位时,两组整流装置就会同时导通而造成短路事故。为了避免这种事故,设计有逻辑保护环节,如图1.9所示。逻辑保护环节截取了逻辑运算电路经延时电路后的两个输入信号作为一个或非门的输入信号。当正常工作时,两个输入信号总是一个是高电位,另一个是低电位。或非门输出总是低电位,它不影响脉冲封锁信号的正常输出,但一旦两个输入信号均为低电位时,它输出一个高电位,同时加到两个触发器上,将正反两组整流装置的触发脉冲全部封锁了,使系统停止工作,起到可靠的保护作用。图

13、1.9逻辑保护装置结构图由电平检测、逻辑运算电路、延时电路、逻辑保护四部分就构成了无环流逻辑装置。其结构如图1.10所示。 图1.10 无环流逻辑装置结构图2 系统主电路设计2.1 主电路原理及说明逻辑无环流可逆直流调速系统的主电路如下图所示:图2.1 逻辑无环流可逆直流调速系统主电路两组桥在任何时刻只有一组投入工作(另一组关断),所以在两组桥之间就不会存在环流。但当两组桥之间需要切换时,不能简单的把原来工作着的一组桥的触发脉冲立即封锁,而同时把原来封锁着的一组桥立即开通,因为已经导通的晶闸管并不能在触发脉冲取消的一瞬间立即被关断,必须待晶闸管承受反压时才能关断。如果对两组桥的触发脉冲的封锁和

14、开放同时进行,原先导通的那组桥不能立即关断,而原先封锁着的那组桥已经开通,出现两组桥同时导通的情况,因没有环流电抗器,将会产生很大的短路电流,把晶闸管烧毁。为此首先应是已导通的的晶闸管断流,要妥当处理主回路中的电感储存的一部分能量回馈给电网,其余部分消耗在电机上,直到储存的能量释放完,主回路电流变为零,使原晶闸管恢复阻断能力,随后再开通原来封锁着的那组桥的晶闸管,使其触发导通。2.2 主电路参数设计Ud=2.34U2cos Ud=UN=220V, 取=0 U2= 晶闸管参数计算:对于三相桥式整流电路,晶闸管电流的有效值为:则晶闸管的额定电流为:取1.52倍的安全裕量,由于电流连续,因此晶闸管最大正反向峰值电压均为变压器二次线电压峰值,即:取23倍的安全裕量,2.3 保护电路设计在主电路变压器二次侧并联电阻和电容构成交流侧瞬态过电压保护及滤波,晶闸管并联电阻和电容构成关断缓冲。过电流保护可以通过电流互感器检测输入电流的变化,与给定值进行比较,当达到设定值时发出过流信号到逻辑控制器,再由逻辑控制

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 资格认证/考试 > 自考

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号