射频中的回波损耗

上传人:博****1 文档编号:457097186 上传时间:2023-10-22 格式:DOCX 页数:11 大小:26.29KB
返回 下载 相关 举报
射频中的回波损耗_第1页
第1页 / 共11页
射频中的回波损耗_第2页
第2页 / 共11页
射频中的回波损耗_第3页
第3页 / 共11页
射频中的回波损耗_第4页
第4页 / 共11页
射频中的回波损耗_第5页
第5页 / 共11页
点击查看更多>>
资源描述

《射频中的回波损耗》由会员分享,可在线阅读,更多相关《射频中的回波损耗(11页珍藏版)》请在金锄头文库上搜索。

1、射频中的回波损耗,反射系数,电压驻波比以及S参数的含义 和关系回波损耗,反射系数,电压驻波比,S11这几个参数在射频微波应用中经常会碰到,他们各自的含义如下:回波损耗(Return Loss):入射功率/反射功率,为dB数值反射系数():反射电压/入射电压,为标量电压驻波比(Voltage Standing Wave Ration):波腹电压/波节电压S参数:S12为反向传输系数,也就是隔离S21为正向传输系数,也就是增益S11为输入反射系数,也就是输入回波损耗, S22为输出反射系数,也就是输出回波损耗。四者的关系:vswr=(1+)/(1t)(1)S11=20lg()(2)rl=-S11(

2、3)以上各参数的定义与测量都有一个前提,就是其它各端口都要匹配。这些参数的共同点:他们都是描述阻抗匹配好坏程度的 参数。其中,S11实际上就是反射系数r,只不过它特指一个网络1号端口的反射系数。反射系数描述的是入射电压和反射 电压之间的比值,而回波损耗是从功率的角度来看待问题。而电压驻波的原始定义与传输线有关,将两个网络连接在一起, 虽然我们能计算出连接之后的电压驻波比的值,但实际上如果这里没有传输线,根本不会存在驻波。我们实际上可以认为电 压驻波比实际上是反射系数的另一种表达方式,至于用哪一个参数来进行描述,取决于怎样方便,以及习惯如何。回波损耗、反射系数、电压驻波比以及S参数的物理意义回波

3、损耗反射系数电压驻波比s参数以二端口网络为例,如单根传输线,共有四个S参数:S11,S12, S21,S22,对于互易网络有S 12 = S21, 对于对称网络有S 11 = S22,对于无耗网络,有S 11*S11+S21*S21 = 1,即网络不消耗任何能量,从端口 1输入的能量不是被反射回端口 1就是传输到端口 2上了。在高速电路设计中用到以二端口网络为例,如单根传输线,共有四个S参数:S11, S12, S21, S22,对于互易网络有S 12 = S21, 对于对称网络有S 11 = S22,对于无耗网络,有S 11*S11+S21*S21 = 1,即网络不消耗任何能量,从端口 1输

4、入的 能量不是被反射回端口 1就是传输到端口 2上了。在高速电路设计中用到的微带线或带状线,都有参考平面, 为不对称结构(但平行双导线就是对称结构),所以S11不等于S22,但满足互易条件,总是有S12 = S21。假设 Port1为信号输入端口,Port2为信号输出端口,则我们关心的S参数有两个:S11和S21, S11表示回波损耗, 也就是有多少能量被反射回源端(Port1) 了,这个值越小越好,一般建议S110.7,即一3dB,如果网络是无耗的,那么只要Port1上的反射很小,就可以满足S210.7 的要求,但通常的传输线是有耗的,尤其在GHz以上,损耗很显著,即使在Port1上没有反射

5、,经过长距离的 传输线后,S21的值就会变得很小,表示能量在传输过程中还没到达目的地,就已经消耗在路上了。对于由2根或以上的传输线组成的网络,还会有传输线间的互参数,可以理解为近端串扰系数、远端串 扰系统,注意在奇模激励和偶模激励下的S参数值不同。需要说明的是,S参数表示的是全频段的信息,由于传输线的带宽限制,一般在高频的衰减比较大,S参数的指 标只要在由信号的边缘速率表示的EMI发射带宽围满足要求就可以了。回波损耗,反射系数,电压驻波比,S11这几个参数在射频微波应用中经常会碰到,他们各自的含义如下:回波损耗(Return Loss):入射功率/反射功率,为dB数值反射系数(): 反射电压/

6、入射电压,为标量电压驻波比(Voltage Standing Wave Ration):波腹电压/波节电压S参数:S12为反向传输系数,也就是隔离。S21为正向传输系数,也就是增益。S11为输入反射系数,也就是 输入回波损耗,S22为输出反射系数,也就是输出回波损耗。四者的关系:VSWR=(1+r)/(1-r)(1)S11=20lg(r)(2)RL=-S11(3)以上各参数的定义与测量都有一个前提,就是其它各端口都要匹配。这些参数的共同点:他们都是描述阻抗匹 配好坏程度的参数。其中,S11实际上就是反射系数r,只不过它特指一个网络1号端口的反射系数。反射系 数描述的是入射电压和反射电压之间的比

7、值,而回波损耗是从功率的角度来看待问题。而电压驻波的原始定义 与传输线有关,将两个网络连接在一起,虽然我们能计算出连接之后的电压驻波比的值,但实际上如果这里没 有传输线,根本不会存在驻波。我们实际上可以认为电压驻波比实际上是反射系数的另一种表达方式,至于用 哪一个参数来进行描述,取决于怎样方便,以及习惯如何。回波损耗与VSWR之间的转换关系,读者可以采用上面的式子1和2来手动计算.反射系数 行波系数 驻波比 回波损耗1定义:天馈线匹配:阻抗匹配的优劣一般用四个参数来衡量,即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用那一 个均出于习惯。通常用的较多的是驻波比和回波损

8、耗.比:它是行波系数的倒数,其值在1到无穷大之间。驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。在移动通信系统中,一般要求驻波比小于1.5。回波损耗:它是反射系数绝对值的倒数,以分贝值表示。回波损耗的值在0dB 的到无穷大之间,回波损耗越大表示匹配越好。0表示全反射,无穷大表示完全匹配。在移动通信系统中,一般要求回波损耗大于14dB。2公式表达2.1驻波比:S=电压最大值/电压最小值=Umax/Umin2.2行波系数:K=电压最小值/电压最大值=Umin/Umax=(入射波振幅-反射波振幅)/(反射波振幅+入射波振幅)2.3反射系数:P =反射波振幅/入射波振幅=(传输线特性阻

9、抗-负载阻抗)/(传输线特性阻抗+负载阻抗)即 P= | (Zb-Za) / (Zb+Za) | 取绝对值2.4回波损耗:L = 1/P= | (Zb+Za) / (Zb-Za) |2.5驻波比与反射系数:S=(1+P) / (1-P)vswr百科名片VSWR翻译为电压驻波比(Voltage Standing Wave Ratio),一般简称驻波比。电磁波从甲介质传导到乙介质,会由于介质不同, 电磁波的能量会有一部分被反射,从而在甲区域形成“行驻波”。电压驻波比,指的就是行驻波的电压峰值与电压谷值之比, 此值可以通过反射系数的模值计算:VSWR=(1+反射系数模值)/(1-反射系数模值)。而入

10、射波能量与反射波能量的比值为1: (反射系数模的平方)由上可知,驻波比越大,反射功率越高,传输效率越低。目录简介具体描述简介具体描述展开编辑本段简介VSWR翻译为电压驻波比(Voltage Standing Wave Ratio),一般简称驻波比。电磁波从甲介质传导到乙介质,会由于介质不同,电磁波的能量会有一部分被反 射,从而在甲区域形成“行驻波”。电压驻波比,指的就是行驻波的电压峰值与电压谷值之比,此值可以通过反射系数 的模值计算:VSWR=(1+反射系数模值)/(1-反射系数模值)。而入射波能量与反射波能量的比值为1:(反射系数模的平方)从能量传输的角度考虑,理想的VSWR为1:1 ,即此

11、时为行波传速状态,在传输 线中,称为阻抗匹配;最差时VSWR无穷大,此时反射系数模为1,为纯驻波状态,称 为全反射,没有能量传输。由上可知,驻波比越大,反射功率越高,传输效率越低。编辑本段具体描述电压驻波比(VSWR)电压驻波比(VSWR)是射频技术中最常用的参数,用来衡量部件之间的匹配是否 良好。当业余无线电爱好者进行联络时,当然首先会想到测量一下天线系统的驻波比 是否接近1:1,如果接近1:1,当然好。常常听到这样的问题:但如果不能达到1,会怎样呢?驻 波比小到几,天线才算合格?为什么大小81这类老式的军用电台上没有驻波表?VSWR及标称阻抗发射机与天线匹配的条件是两者阻抗的电阻分量相同、

12、感抗部分互相抵消。如果 发射机的阻抗不同,要求天线的阻抗也不同。在电子管时代,一方面电子管本输出阻 抗高,另一方面低阻抗的同轴电缆还没有得到推广,流行的是特性阻抗为几百欧的平 行馈线,因此发射机的输出阻抗多为几百欧姆。而现代商品固态无线电通信机的天线 标称阻抗则多为50欧姆,因此商品VSWR表也是按50欧姆设计标度的。如果你拥有一台输出阻抗为600欧姆的老电台,那就大可不必费心血用50欧姆的 VSWR计来修理你的天线,因为那样反而帮倒忙。只要设法调到你的天线电流最大就可 以了。VSWR不是1时,比较VSWR的值没有意义正因为VSWR除了 1以外的数值不值得那么精确地认定(除非有特殊需要),所以

13、 多数VSWR表并没有象电压表、电阻表那样认真标定,甚至很少有 VSWR给出它的误差 等级数据。由于表射频耦合元件的相频特性和二极管非线性的影响,多数VSWR表在不 同频率、不同功率下的误差并不均匀。VSWR都=1不等于都是好天线影响天线效果的最重要因素:谐振让我们用弦乐器的弦来加以说明。无论是提琴还是古筝,它的每一根弦在特定的 长度和力下,都会有自己的固有频率。当弦以固有频率振动时,两端被固定不能移动, 但振动方向的力最大。中间摆动最大,但振动力最松弛。这相当于自由谐振的总长度 为1/2波长的天线,两端没有电流(电流波谷)而电压幅度最大(电压波腹),中间电 流最大(电流波腹)而相邻两点的电压

14、最小(电压波谷)。我们要使这根弦发出最强的声音,一是所要的声音只能是弦的固有频率,二是驱 动点的力与摆幅之比要恰当,即驱动源要和弦上驱动点的阻抗相匹配。具体表现就是 拉弦的琴弓或者弹拨的手指要选在弦的适当位置上。我们在实际中不难发现,拉弓或 者拨弦位置错误会影响弦的发声强度,但稍有不当还不至于影响太多,而要发出与琴 弦固有频率不同的声响却是十分困难的,此时弦上各点的振动状态十分复杂、混乱, 即使振动起来,各点对空气的推动不是齐心合力的,发声效率很低。天线也是同样,要使天线发射的电磁场最强,一是发射频率必须和天线的固有频 率相同,二是驱动点要选在天线的适当位置。如果驱动点不恰当而天线与信号频率谐

15、 振,效果会略受影响,但是如果天线与信号频率不谐振,则发射效率会大打折扣。所以,在天线匹配需要做到的两点中,谐振是最关键的因素。在早期的发信机,例如本期介绍的71型报话机中,天线电路只用串联电感、电容 的办法取得与工作频率的严格谐振,而进一步的阻抗配合是由线圈之间的固定耦合确 定死的,在不同频率下未必真正达到阻抗的严格匹配,但是实际效果证明只要谐振就 足以好好工作了。因此在没有条件做到VSWR绝对为1时,业余电台天线最重要的调整是使整个天线 电路与工作频率谐振。天线的驻波比和天线系统的驻波比天线的VSWR需要在天线的馈电端测量。但天线馈电点常常高悬在空中,我们只能 在天线电缆的下端测量VSWR,这样测量的是包括电缆的整个天线系统的VSWR。当天线 本身的阻抗确实为50欧姆纯电阻、电缆的特性阻抗也确实是50欧姆时,测出的结果 是正确的。当天线阻抗不是50欧姆时而电缆为50欧姆时,测出的VSWR值会严重受到天线长 度的影响,只有当电缆的电器长度正好为波长的整倍数时、而且电缆损耗可以忽略不 计时,电缆下端呈现的阻抗正好和天线的阻抗完全一样。但即便电缆长度是整倍波长, 但电缆有损耗,例如电缆较细、电缆的电气长度达到波长的

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号