转录和转录水平的调控要点

上传人:公**** 文档编号:456359433 上传时间:2024-02-02 格式:DOC 页数:11 大小:60.51KB
返回 下载 相关 举报
转录和转录水平的调控要点_第1页
第1页 / 共11页
转录和转录水平的调控要点_第2页
第2页 / 共11页
转录和转录水平的调控要点_第3页
第3页 / 共11页
转录和转录水平的调控要点_第4页
第4页 / 共11页
转录和转录水平的调控要点_第5页
第5页 / 共11页
点击查看更多>>
资源描述

《转录和转录水平的调控要点》由会员分享,可在线阅读,更多相关《转录和转录水平的调控要点(11页珍藏版)》请在金锄头文库上搜索。

1、SECTION 5 转录和转录水平的调控重点:转录的反应体系,原核生物RNA聚合酶和真核生物中的RNA聚合酶的特点,RNA的转录过程大体可分为起始、延长、终止三个阶段。真核RNA的转录后加工,包括各种RNA前体的加工过程。 基因表达调控的基本概念、特点、基本原理。乳糖操纵子的结构、负性调控、正性调控、协调调节、转录衰减、SOS反应。难点: 转录模板的不对称性极其命名,原核生物及真核生物的转录起始,真核生物的转录终止,mRNA前体的剪接机制(套索的形成及剪接),第、类和第类内含子的剪接过程,四膜虫rRNA前体的加工,核酶的作用机理。真核基因及基因表达调控的特点、顺式作用元件和反式作用因子的概念、

2、种类和特点. 以及它们在转录激活中的作用。一模板和酶:要点1 模板 RNA的转录合成需要DNA做模板,DNA双链中只有一股链起模板作用,指导RNA合成的一股DNA链称为模板链(template strand),与之相对的另一股链为编码链(coding strand),不对称转录有两方面含义:一是DNA链上只有部分的区段作为转录模板(有意义链或模板链),二是模板链并非自始至终位于同一股DNA单链上。2 RNA聚合酶 转录需要RNA聚合酶。原核生物的RNA聚合酶由多个亚基组成:2称为核心酶,转录延长只需核心酶即可。2称为全酶,转录起始前需要亚基辨认起始点,所以全酶是转录起始必需的。真核生物RNA聚

3、合酶有RNA-pol、三种,分别转录45s-rRNA; mRNA(其前体是hnRNA);以及5s-rRNA、snRNA和tRNA。3.模板与酶的辨认结合转录模板上有被RNA聚合酶辨认和结合的位点。在转录起始之前被RNA聚合酶结合的DNA部位称为启动子。典型的原核生物启动子序列是-35区的TTGACA序列和-10区的Pribnow盒即TATAAT序列。真核生物的转录上游调控序列统称为顺式作用元件,主要有TATA盒、CG盒、上游活化序列(酵母细胞)、增强子等等。和顺式作用元件结合的蛋白质都有调控转录的作用,统称为反式作用因子。反式作用因子已发现数百种,能够归类的称为转录因子(TF),相应于RNA-

4、pol、的是TF、TF、TF。TF又有A、B、C、D、E、F多种及其亚类。基本概念:1.不对称转录: 两重含义,一是指双链DNA只有一股单链用作转录模板(模板链);二是对不同基因同一单链上某些区段作为模板链而另一些区段作为编码链,即模板链并非永远在同一单链上。2. 编码链: DNA双链上不用作转录模板的那一段单链,因其碱基序列除由T代替U而外,其他与转录产物mRNA序列相同而得名。3(sigma)因子: 原核生物RNA聚合酶全酶的成份,功能是辨认转录起始区,这种因子称70,此外还有分子量不同,功能不同的其他因子。基本要求: 掌握转录与复制的区别,转录的不对称性,原核生物的RNA聚合酶的组成及各

5、亚基的功能,真核生物RNA聚合酶的分类、性质及功能,原核生物启动子的结构特点,了解真核生物RNA聚合酶的组成,研究转录起始区的方法。二转录过程1 转录起始:转录的起始就是生成由RNA聚合酶,模板和转录5端首位核苷酸组成的起始复合物。原核生物RNA5端是嘌呤核苷酸(A、G),而且保留三磷酸核苷的结构,所以其起始复合物是:pppG-DNA-RNA聚合酶。真核生物起始,生成起始前复合物(PIC)。例如RNA-pol-转录,是由各种TF相互辨认结合,再与RNA聚合酶结合,并通过TF结合到TATA盒上. 2. 转录延长: 转录的延长是以首位核苷酸的3-OH为基础逐个加人NTP即形成磷酸二醋键,使RNA逐

6、步从5向3端生长的过程。在原核生物,因为没有细胞膜的分隔,转录未完成即已开始翻译,而且在同一DNA模板上同时进行多个转录过程。电镜下看到的羽毛状图形和羽毛上的小黑点(多聚核糖体),是转录和翻译高效率的直观表现。3 录终止:转录的终止在原核生物分为依赖Rho因子与非依赖Rho因子两类。Rho因子有ATP酶和解螺旋酶两种活性,因此能结合转录产物的3末端区并使转录停顿及产物RNA脱离DNA模板。非依赖Rho因子的转录终止,其RNA产物3-端往往形成茎环结构,其后又有一串寡聚U。茎环结构可使因子聚合酶变构而不再前移,寡聚U则有利于RNA不再依附DNA模板链而脱出。因此无论哪一种转录终止都有RNA聚合酶

7、停顿和RNA产物脱出这两个必要过程。真核生物转录终止是和加尾(mRNA的聚腺昔酸poly A)修饰同步进行的。 RNA上的加尾修饰点结构特征是有AAAUAA序列。基本概念:1转录起始前复合物 (pre-initiation complex,PIC):是真核生物转录因子与RNA聚合酶一同结合于转录起始前的DNA区域而成的复合物。 2加尾修饰点:真核生物mRNA转录不是在mRNA的位置上终止,而是在数百个核苷酸之后,研究发现在编码链读码框架的3端之后,常有一组共同序列AATAAA,再下游还有相当多GC的序列,这些序列称为加尾修饰点,转录越过修饰点后,mRNA在修饰点处被切断,随即加入polyA。3

8、Rho因子:是原核生物转录终止因子,有ATP酶和解螺旋酶活性。转录终止也可不依赖Rho因子。基本要求:掌握原核生物的转录起始复合物的形成过程,真核生物转录起始及起始前复合物(PIC)的生成,RNA聚合酶催化的转录起始过程中各种TF的作用,转录延伸过程中的化学反应,原核生物的转录终止的两种形式,真核生物的转录终止的修饰点。了解原核生物RNA聚合酶的各种亚基与真核生物的各种转录因子之间的关系即拼版理论,原核生物转录空泡的形成及转录产物的释放过程。三真核RNA的转录后加工1 mRNA转录后加工真核生物转录生成的RNA,多需经加工后才具备活性,这一过程称为转录后修饰,mRNA转录后修饰包括首、尾修饰和

9、剪接。加尾修饰是和转录终止同步的,5端修饰主要是指生成帽子结构,即把5-pppG转变为5-pmGpppG。其过程需磷酸解、磷酸化和碱基的甲基化。mRNA由hRNA加工而成。真核生物基因由内含子隔断编码序列的外显子,是断裂基因。内含子一般也出现在转录初级产物hRNA。切除内含子,把外显子连结在一起,就是剪接加工。在电镜下看到加工过程,内含子往往被弯曲成套索状,因此称为套索RNA。现在知道剪接加工中,需要由多种Sn-RNA与蛋白质共同组成的并接体。并接体和hnRNA上的内含子边界序列辨认结合。剪接过程先由含鸟苷酸的酶提供3-OH对其中内含子5-端的磷酸二酯键作亲电子攻击使其断裂。断裂的外显子3-O

10、H对内含子3-端的磷酸二酯键作亲电子攻击,使刚断出的外显子完全置换了内含子,两个外显子就相连起来,因此这个过程称二次转酯反应。2tRNA转录后加工tRNA的转录后修饰,除了剪接加工外,还包括tRNA链上稀有碱基的形成,以及加上3端的CCA序列。3rRNA的转录后加工 rRNA加工多采用自我剪接的形式。自我剪接的RNA本身形成一种特别的二级结构,称为锤头结构。锤头结构是指复合的茎环组成形态,但其中某些序列上必需是特定的碱基所占据。这种RNA结构,不需要任何蛋白质,就可以水解RNA链上某一特定位点的磷酸二酯键。也就是说,这是一种起催化作用的RNA,现称为核酶。核酶的发现,对酶学、分子生物学,进化生

11、物学都是重要的理论更新,而且,医学上已开始利用人工设计的核酶,去消灭一些作为病原体的RNA病毒或消除一些不利于生命活动的细胞内RNA。基本概念:1. 剪接修饰: RNA转录初级产物含有非编码组分,通过剪接除去非编码组分,把编码组份连接起来。剪接修饰最常见的是靠并接体协助的二次转酯反应,此外还可有自我剪接及需酶的剪接等剪接方式。2. 外显子: 定义为断裂基因上及其转录初级产物上可表达的序列。或转录初级产物上通过拼接作用而保留于成熟的RNA中的核苷酸序列或基因中与成熟RNA相对应的DNA序列3. 内含子: 早期定义为核酸上的非编码序列。随着内含子功能的被拓宽,建议用转录初级产物上通过拼接作用而被去

12、除的RNA序列或基因中与这种RNA序列相对应的DNA序列较全面。4. 并接体:由snRNA和蛋白质组成的核糖核酸蛋白(核蛋白)复合物。其功能是结合内含子两端的边界序列,协助RNA的剪接加工。5. 核酶(ribozyme):具有催化功能(酶的作用)的RNA分子。核酶能起作用的结构,至少含有3个茎(RNA分子内配对形成的局部双链),1至3个环(RNA分子局部双链鼓出的单链)和至少有13个一致性的碱基位点。基本要求:掌握真核生物mRNA转录后5-端加帽;3-端加尾及mRNA链进行剪接修饰,tRNA及rRNA的转录后加工过程,了解内含子的其他剪接方式及功能,核酶的应用。转录水平的调控 一、基因表达调控

13、基本概念与原理1、基因表达的概念 基因是一段DNA分子,编码一种多肽链或 RNA。基因通过转录和翻译产生具有一定功能的蛋白质的过程。大多数基因的表达产物是蛋白质,部分基因如rRNA和tRNA 基因的表达产物是RNA.2、基因表达的特点 (A)、时间特异性或发育阶段特异性、(B)、空间特异性或组织细胞特异性,(C)、有两种表达方式,管家基因几乎在所有的细胞和所有的发育阶段持续表达,基本不受环境因素的影响,只受启动子调节。另外一些基因的表达受环境因素的诱导或阻遏。(D)、 基因表达可在多层次上受到调节如基因、转录、转录后加工 翻译和翻译后加工等水平上进行调节。但最主要的是转录水平的调节,本章讨论的

14、内容是原核基因和真核基因转录水平的调节。3、基因转录激活的基本要素: (A)、特异的调节序列 是调节基因转录的片段,如原核生物操纵子调控区中的启动序列、操纵序列、P蛋白结合位点和真核基因的启动子、增强子和沉默子等。(B)、调节蛋白 是调节基因转录的蛋白因子,如原核生物的阻遏蛋白和蛋白、真核生物的基本转录因子和特异转录因子等。、(C)、聚合酶 是催化基因转录最主要的酶。原核生物只有一种聚合酶,催化所有的转录。真核生物有三种聚合酶,催化不同的转录。调节元件和调节蛋白可以通过影响RNA聚合酶的活性来调接基因转录激活。二、 原核基因转录调控1 原核基因表达调节的特点:(A)因子决定聚合酶识别特异性,帮

15、助聚合酶识别不同启动子,对不同基因进行转录。(B)、转录调节普遍采用操纵子模式, 原核生物功能相关的基因往往串联地排列在一起,在一个共同的调控区的调节下,一起转录生成一个多顺反子,最终表达产物是一些功能相关的酶或蛋白质,它们起参与某种底物的代谢或某种产物的合成。(C)、阻遏蛋白对转录的抑制作用是普遍存在的贡性调节。2、乳糖操纵子的结构、负性和正性调节及协调调节: (A)、乳糖操纵子包括三个结构基因(Z、 Y、 A)、三个调节序列:启动序列、操纵序列和CAP蛋白结合位点,以及一个调节基因,调节基因编码阻遏蛋白。(B)、阻遏蛋白的负性调节 蛋白质与DNA结合抑制基因的转录属于负性调节。操纵序列是控制操纵子中结构基因转录的开关,阻遏蛋白与操纵序列结合可阻止RNA聚合酶对结构基因的转录。当乳糖存在时,乳糖的分鲜产物半乳糖与阻遏蛋白结合,导致阻遏蛋白与操纵序列解离,诱导基因的转录。(C)、 CAP的正性调节 蛋白质与DNA结合增强基因转录属于正性调节。在启动子上游子存在CAP结合位点, CAP与其结合后可促进RNA聚合酶与启动秀列结合,从而促进转录。但是,CAP单独不能与其位点结合,只有与cAMP形成复合物后才能与CAP位点结合。细胞内葡萄糖缺乏时,cAMP水平升高,cAMP一CAP复合物

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 医学/心理学 > 基础医学

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号