毕业论文设计基于ArcGISEngine的林火扑救辅助决策模块设计与实现36786

上传人:新** 文档编号:456233232 上传时间:2023-10-22 格式:DOC 页数:9 大小:290.50KB
返回 下载 相关 举报
毕业论文设计基于ArcGISEngine的林火扑救辅助决策模块设计与实现36786_第1页
第1页 / 共9页
毕业论文设计基于ArcGISEngine的林火扑救辅助决策模块设计与实现36786_第2页
第2页 / 共9页
毕业论文设计基于ArcGISEngine的林火扑救辅助决策模块设计与实现36786_第3页
第3页 / 共9页
毕业论文设计基于ArcGISEngine的林火扑救辅助决策模块设计与实现36786_第4页
第4页 / 共9页
毕业论文设计基于ArcGISEngine的林火扑救辅助决策模块设计与实现36786_第5页
第5页 / 共9页
点击查看更多>>
资源描述

《毕业论文设计基于ArcGISEngine的林火扑救辅助决策模块设计与实现36786》由会员分享,可在线阅读,更多相关《毕业论文设计基于ArcGISEngine的林火扑救辅助决策模块设计与实现36786(9页珍藏版)》请在金锄头文库上搜索。

1、基于ArcGIS Engine的林火扑救辅助决策模块设计与实现王佳1 熊妮娜1 张冬有1 李亚冬1(1 北京林业大学测绘与3S技术中心)摘要:目前我国森林火灾多发,对森林的破坏性极大,危害极深,造成的经济损失十分严重。本文的研究基于地理信息系统二次开发工具ArcGIS Engine设计并开发一套林火扑救辅助决策模块,该模块主要实现了林火扑救决策中的火点定位、预测扑火战场、扑火最短路径分析、扑火资源有效配置、阻火隔离带的正确设置等功能。这些功能的设计针对林火扑救中的各方面决策工作,结合3S技术和计算机技术,可以有效的提高决策人员对于林火扑救决策能力。此模块可方便嵌入其它林火管理系统中,实现林火扑

2、救辅助决策功能。关键词:林火扑救、辅助决策、 ArcGIS Engine第一作者:王佳 单位:北京林业大学测绘与3S技术中心 地址:北京市海淀区清华东路35号北京林业大学111信箱 邮编:100083 E-mail:wangjia2002_ 电话:138106645331 引言森林火灾属于世界性、跨国性的自然灾害,对森林的破坏性极大,危害极深,造成的经济损失相当严重。据大略的统计,在2000年以前世界每年发生火灾约22万次以上,烧毁各种森林达640多万hm2,约占全球森林总面积的0.23%以上。我国是一个森林火灾的多发国家,由于我国国土辽阔、地形复杂多样,各地气候千差万别,同时我国人口众多,人

3、口分布广泛,特别是广大林区的人们生活普遍较为落后,存在着靠山吃山的现象。森林火灾频发,造成的经济损失居高不下。林火发生带有突发性,要在很短的时间判断林火的发展趋势,并及时采取决策,同时还要随时掌握现场的状况,必须将所有的现场信息及时地获取并快速的形成有效的管理,做到预防及时、决策得力、控制有效。如何从被动的救火队,变成主动的林火管理者,使林火按人的意愿进行,乃是每一个林火工作者应有的理想。在林火管理中,要对林火进行有效地管理,必须对林火发生的位置有清楚的了解,并根据林火的发生位置进行资源的有效配置,在最短时间内分析出扑救队伍到达火场的路径,在最佳位置设置阻火隔离带,才可能有效地防扼制森林火灾的

4、蔓延并及时将其扑灭。2 ArcGIS Engine简介ArcGIS Engine是美国ESRI公司最新GIS软件ArcGIS 9.0下新增的基于ArcObjects的一个面向开发的新产品。它提供了嵌入式的GIS组件,能用来在一个组织内建立应用,为用户提供有针对性的GIS功能,并为每个用户的特定需求提供有针对性GIS功能实现的基础。ArcGIS Engine基于ArcObjects构建,并提供跨平台的,C +组件技术框架用于构建ArcGIS1-3。在地理信息系统二次开发中,大多数情况下都不能脱离专业的软件开发环境,使得用户在使用二次开发软件的时候十分不方便。例如,在ArcObjects环境下的二

5、次开发要依赖ArcGIS这个环境,用户在使用的时候也要求有同样的环境,大大限制了二次开发软件的可使用性和操作性。ArcGIS Engine脱胎于ArcObjects,但比ArcObjects具有更强大的开发功能和独立性,使用ArcGIS Engine,可以使二次开发产品嵌入到我们需要的应用程序中去。3 模块功能设计本次设计的林火扑救辅助决策模块根据林火发生的特点及扑火功能的实际要求,并咨询了林火方面的专家,设计并开发了扑救辅助决策模块具有如下功能(见图1):图1 林火扑救辅助决策模块功能设计4 模块功能的实现4.1 火点标绘此功能提供了三种方式进行火点的在电子地图上的标绘,一是叠加高时间分辨率

6、的遥感影像图,人工目视解译火点位置,并通过点击在图上确定火点位置;二是扑火队员实时发现并报告的火点大地坐标(或经纬度坐标),由指挥人员在模块的界面中输入火点坐标,实时在图上显示;三是通过瞭望塔发现火点,报告发现火点的角度,指挥人员可以通过输入两个瞭望塔发现火点的角度,即可计算出火点的实际位置。计算公式如式1:首先通过三角函数求出两个瞭望塔1、2距火点的距离分别分A、B,瞭望塔1的坐标为(x1,y1),瞭望塔2的坐标为(x2,y2),待求火点的坐标为(x3,y3),解方程组可得到火点的坐标。 式(1)4.2 扑火队伍管理扑火队伍管理这一部分设计了两大功能,一是对于扑火队伍进行属性的更改;二是根据

7、火点位置的情况,人工交互式选择最近的几支扑火队参与扑火,并确定主攻扑火队。扑火队伍属性的更改,包括了对于扑火队伍的增加,修改和删除,扑火队伍数据库设计中包括了图形数据和属性数据两部分,图形数据是通过ARCGIS的shp格式文件进行管理的,而对于属性数据用的是Mircosoft Access数据管理系统进行管理,两种数据通过编码关键字段实现互连(见图2)。图2 扑火队伍管理扑火队伍的选择,提供了多种选择方式(点选,矩形选,多边形选)通过指挥人员在电子地图上标记出参与扑火的队伍,弹出对话框是选择的扑火队情况表,根据各扑火队情况,由指挥人员确定主攻扑火队,并在图上闪烁(见图3)。图3 选择扑火队4.

8、3 扑火战场预测扑火战场的预测,是根据火点位置,选择的主攻扑火队位置并输入其它相关参数,根据预测模型来确定扑火战场位置(即预测主攻扑火队与火前锋交汇位置),其中需要输入的参数包括有速度参数(林火蔓延速度,扑火队伍前进速度),时间参数(发火时间,扑火队伍出发时间),地形更正系数,扑火队伍与火前锋相对位置(在前,在后)。下图4为火场预测的示意图,功能实现如下图4。图4 火场预测示意图图4中 O点火点位置,C点是扑火队伍位置,B点是预测扑火战场位置,A点是扑火队伍所在位置C到火场椭圆长轴的垂足,D点是扑火队出发时火前锋已到达的地点。预测扑火战场位置,首先要计算火前锋由D点蔓延到B点的时间t3(c),

9、(如式2): 式2如果扑火队位置在火前锋前方,则计算t3公式(如式3): 式3 式中,R为林火蔓延速度(米/分),V为扑火队赶赴火场的行进速度(m/c),L1是图中AC的长度(m),L2是图中AD的长度(m)。再求火点到扑火队伍与火前锋的交汇点的距离BO(如式4):BO=(t2-t1)+t3R 式4式中,为地形更正系数1.2-1.35之间选择,t1发火时间,t2为扑火队伍出发时间,t3为火前锋蔓延至预计火场的时间。最后根据三角函数求解B点坐标即可。图4 扑火战场预测4.4 扑火队伍最短路径分析根据所标绘的火点位置及主攻扑火队伍位置预测出扑火战场位置,然后即可利用最短路径分析公式计算选择的各个扑

10、火队到预测扑火战场的最短路径。最短路径分析的公式采用经典的Dijkstra算法,对于道路根据道路属性(国道,省道,县级公路等)进行加权处理。在开发中应用了ArcGIS Engine工具包里提供的对于最短路径分析的算法函数FindPath。计算得出扑火队伍到达预测扑火战场的距离及所用时间。此功能实现如下图5所示:图5 扑火队伍最短路径分析4.5 扑火资源配置这部分是根据人工交互选择的扑火队伍情况,一是通过限定扑火队人数来确定扑火时间,二通过限定扑火时间来确定所需扑火队人数。此部分功能实现如图6所示:(1)按可投入的扑火兵力,计算扑救时间(如式5): 式(5)式中:J1为扑火队2号工具数量(把),

11、D1为二号工具灭火定额(m/把分),J2为扑火队所带风力灭火机数量(台),D2为风力灭火机灭火定额(m/台分),为风力灭火定额系数见表1,P为火场周长(m)表1 灭火定额系数表火强度(I)更正系数()火强度(I)更正系数()I2001.8700I=8000.8200I=3001.6800I=9000.7300I=4001.4900I=10000.6400I=5001.21000I=15000.5500I=6001.0I15000.4600I=7000.9(2)限定扑救时间,计算所需兵力及机具(如式6)D2=8D1每台灭火机需要2个人,每把2号工具需要1人灭火机数量:扑救总兵力=1:n 一般情况

12、下是大于7的整数 (把) (台)限定时间进行扑救所需兵力Z Z=J1+2J2 式(6) 图6扑火资源配置4.6 阻火隔离带设置指挥人员根据经验判断及确定是否设置阻火隔离带,如需要在图上点击确定阻火隔离带的小班位置。计算阻火隔离带的横长L,阻火隔离带的顺风蔓延方向长度(带宽度)及阻火隔离带的面积S,此部分功能实现如下图7所示,计算公式如下:待添加的隐藏文字内容3(1) 阻火隔离带横长L(如式7)L=a*C C=K*D 式(7)式中:L为阻火隔离带横长(m),C为火头横长(m),a为可靠系数1.2-1.3之间,K为风力更正系数,风力1-2级时K=0.8 风力3-4级时 K=0.6 风力5-6级 K

13、=0.5 风力大于7级时 K=0.3,D为起火点到阻火隔离带距离(2) 阻火隔离带顺风蔓延方向长度l(如式8) l=b*H 式(8)式中:l为阻火隔离带顺风蔓延方向长度(m),H为火焰高度(m),b为可靠系数,风力1-2级时b=3 风力3-4级时 b=5 风力5-6级 b=8 风力大于7级时 b=10(3) 阻火隔离带面积S(m2)(如式9) S=L*l 式(9)图7 阻火隔离带设置4.7参数设置 这一部分功能主要是用于输入与扑火辅助决策相关的气象、气候、地形等参数。5 结论与讨论林火扑救辅助决策模块是基于ArcGIS Engine二次开发工具,应用Microsoft Visual-Studi

14、o.Net 2003开发的一套通用模块,此模块可以编译为DLL(动态链接库)而直接被其它防火系统调用,实现林火扑救辅助决策功能。此模块的研建旨在实现森林火灾扑救中各个环节的辅助决策工作,不论是在理论、技术和方法上都具有可行性,在一定程度上促进了森林火灾指挥扑救研究方法和手段的信息化和现代化。对于林火扑救研究中理论和方法在实际工作中的应用起到了很好的示范作用。但是林火始终是一个复杂的自然过程,目前对于林火行为的描述及蔓延的研究还是不够深入,而林火扑救的辅助决策在很大程度上依赖对于林火行为的研究。本文并未涉及林火行为预测的这一林火研究最为迫切的领域,应在进一步研究中进行补足,才会使此模块更有实践意义和应用价值。参考文献1 ESRI中国(北京)有限公司.ArcGIS产品介绍白皮书,北京

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 资格认证/考试 > 自考

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号