高频电子线路实验指导书高频电子线路实验箱简介

上传人:汽*** 文档编号:454800054 上传时间:2022-09-23 格式:DOC 页数:81 大小:3.84MB
返回 下载 相关 举报
高频电子线路实验指导书高频电子线路实验箱简介_第1页
第1页 / 共81页
高频电子线路实验指导书高频电子线路实验箱简介_第2页
第2页 / 共81页
高频电子线路实验指导书高频电子线路实验箱简介_第3页
第3页 / 共81页
高频电子线路实验指导书高频电子线路实验箱简介_第4页
第4页 / 共81页
高频电子线路实验指导书高频电子线路实验箱简介_第5页
第5页 / 共81页
点击查看更多>>
资源描述

《高频电子线路实验指导书高频电子线路实验箱简介》由会员分享,可在线阅读,更多相关《高频电子线路实验指导书高频电子线路实验箱简介(81页珍藏版)》请在金锄头文库上搜索。

1、高频电子线路实验箱简介THCGP-1型仪器介绍 信号源:本实验箱提供的信号源由高频信号源和音频信号源两部分组成,两种信号源的参数如下:1) 高频信号源输出频率范围:0.4MHz45MHz(连续可调);频率稳定度:10E4;输出波形:正弦波;输出幅度:1Vp-p 输出阻抗:75。2) 低频信号源: 输出频率范围:0.2kHz20 kHz(连续可调);频率稳定度:10E4;输出波形:正弦波、方波、三角波;输出幅度:5Vp-p; 输出阻抗:100。信号源面板如图所示使用时,首先按下“POWER”按钮,电源指示灯亮。高频信号源的输出为RF1、RF2,频率调节步进有四个档位:1kHz、20kHz、500

2、kHz、1MHz档。按频率调节选择按钮可在各档位间切换,为1kHz、20kHz、500kHz档时相对应的LED亮,当三灯齐亮时,即为1MHz档。旋转高频频率调节旋钮可以改变输出高频信号的频率。另外可通过调节高频信号幅度旋钮来改变高频信号的输出幅度。音频信号源可以同时输出正弦波、三角波、方波三种波形,各波形的频率调节共用一个频率调节旋钮,共有2个档位:2kHz、20kHz档。按频率档位选择可在两个档位间切换,并且相应的指示灯亮。调节音频信号频率调节旋钮可以改变信号的频率。分别改变三种波形的幅度调节旋钮可以调节输出的幅度。 本信号源有内调制功能,“FM”按钮按下时,对应上方的指示灯亮,在RF1和R

3、F2输出调频波,RF2可以外接频率计显示输出频率。调频波的音频信号为正弦波,载波为信号源内的高频信号。改变“FM频偏”旋钮调节输出的调频信号的调制指数。按下“AM”按钮时,RF1、RF2输出为调幅波,同样可以在RF2端接频率计观测输出频率。调节“AM调幅度”可以改变调幅波的幅度。面板下方为5个射频线插座。“RF1”和“RF2”插孔为400kHz45MHz的正弦波输出信号,在做实验时将RF1作为信号输出,RF2接配套的频率计观测频率。另外3个射频线插座为音频信号3种波形的输出:正弦波、三角波、方波,频率范围为0.2k至20kHz。 等精度频率计(1) 等精度频率计面板示意图: (2)等精度频率计

4、参数如下: 频率测量范围:20Hz100MHz 输入电平范围:100mV5V 测量误差:510-51个字 输入阻抗:1M/40pF (3)使用说明: 频率显示窗口由五位数码管组成,在整个频率测量范围内都显示5位有效位数。按下电源开关,电源指示灯亮,此时频率显示窗口的五位数码管全显示8.,且三档频率指示灯同时亮,约两秒后五位数码全显示0,再进入测量状态。若输入信号的频率在20.000Hz999.99Hz范围内,Hz指示灯亮;输入信号的频率在1.0000kHz999.99kHz范围内,kHz指示灯亮;输入信号的频率在1.0000MHz以上,MHz指示灯亮;当输入信号小于100kHz时,应按下频率选

5、择按钮,此时频率选择指示灯亮;当输入信号大于100kHz时,应弹开频率选择按钮,此时频率选择指示灯灭。产品布局简图实验一高频小信号调谐放大器实验一、实验目的1掌握小信号调谐放大器的基本工作原理。2掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算。3了解高频小信号放大器动态范围的测试方法。二、实验原理图1-1(a) 单调谐小信号放大 图1-1(b) 双调谐小信号放大(一)单调谐放大器小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。其实验单元电路如图1-1()所示。该电路由晶体管、选频回路二部分组成。它不仅对高频小信号进行放大,而且还有一定的选频作用。本实

6、验中输入信号的频率。基极偏置电阻、和射极电阻决定晶体管的静态工作点。可变电阻改变基极偏置电阻将改变晶体管的静态工作点,从而可以改变放大器的增益。表征高频小信号调谐放大器的主要性能指标有谐振频率,谐振电压放大倍数,放大器的通频带BW及选择性(通常用矩形系数来表示)等。放大器各项性能指标及测量方法如下:1谐振频率放大器的调谐回路谐振时所对应的频率称为放大器的谐振频率,对于图1.1()所示电路(也是以下各项指标所对应电路),的表达式为式中,L为调谐回路电感线圈的电感量;C为调谐回路的总电容,C的表达式为式中,为晶体管的输出电容;为晶体管的输入电容;为初级线圈抽头系数为次级线圈抽头系数。谐振频率的测量

7、方法是:用扫频仪作为测量仪器,测出电路的幅频特性曲线,调变压器T的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点。2电压放大倍数放大器的谐振回路谐振时,所对应的电压放大倍数称为调谐放大器的电压放大倍数。的表达式为式中,为谐振回路谐振时的总电导。要注意的是本身也是一个复数,所以谐振时输出电压与输入电压相位差不是而是为。的测量方法是:在谐振回路已处于谐振状态时,用高频电压表测量图1-1()中输出信号及输入信号的大小,则电压放大倍数由下式计算:或3通频带由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数下降到谐振电压放大倍数的0.707倍时所对应的频率

8、偏移称为放大器的通频带BW,其表达式为BW式中,为谐振回路的有载品质因数。分析表明,放大器的谐振电压放大倍数与通频带BW的关系为上式说明,当晶体管选定即确定,且回路总电容为定值时,谐振电压放大倍数与通频带BW的乘积为一常数。这与低频放大器中的增益带宽积为一常数的概念是相同的。图1-2 谐振曲线通频带BW的测量方法:是通过测量放大器的谐振曲线来求通频带。测量方法可以是扫频法,也可以是逐点法。逐点法的测量步骤是:先调谐放大器的谐振回路使其谐振,记下此时的谐振频率及电压放大倍数然后改变高频信号发生器的频率(保持其输出电压不变),并测出对应的电压放大倍数。由于回路失谐后电压放大倍数下降,所以放大器的谐

9、振曲线如图1-2所示。可得:通频带越宽放大器的电压放大倍数越小。要想得到一定宽度的通频宽。同时又能提高放大器的电压增益,除了选用较大的晶体管外,还应尽量减小调谐回路的总电容量。如果放大器只用来放大来自接收天线的某一固定频率的微弱信号,则可减小通频带,尽量提高放大器的增益。4选择性矩形系数调谐放大器的选择性可用谐振曲线的矩形系数时来表示,如图1-2所示的谐振曲线,矩形系数为电压放大倍数下降到0.1时对应的频率偏移与电压放大倍数下降到0.707时对应的频率偏移之比,即上式表明,矩形系数越小,谐振曲线的形状越接近矩形,选择性越好,反之亦然。一般单级调谐放大器的选择性较差(矩形系数远大于1),为提高放

10、大器的选择性,通常采用多级单调谐回路的谐振放大器。可以通过测量调谐放大器的谐振曲线来求矩形系数。(二)双调谐放大器双调谐放大器具有频带较宽、选择性较好的优点。双调谐回路谐振放大器是将单调谐回路放大器的单调谐回路。其原理基本相同。1电压增益为2通频带3选择性矩形系数 三、实验步骤(一)单调谐小信号放大器单元电路实验1根据电路原理图熟悉实验板电路,并在电路板上找出与原理图相对应的各测试点通讯可调器件(具体指出)。2按下面框图(图1-3)所示搭建好测试电路。 图1-3 高频小信号调谐放大器测试连接框图注:图中符号表示高频连接线3打开小信号调谐放大器的电源开关,并观察工作指示灯是否点亮,红灯为12V电

11、源指示灯,绿灯为-12V电源指示灯。(以后实验步骤中不再强调打开实验模块电源开关步骤)4调整晶体管的静态工作点:在不加输入信号时用万用表(直流电压测量档)测量电阻两端的电压(即 )和两端的电压(即 ),调整可调电阻,使 ,记下此时的 、 ,并计算出此时的 。5按下信号源和频率计的电源开关,此时开关下方的工作指示灯点亮。6调节信号源“RF幅度”和“频率调节”旋钮,使输出端口“RF1”和“RF2”输出频率为12MHz的高频信号。将信号输入到2号板的J4口。在TH1处观察信号峰峰值约为50V。7调谐放大器的谐振回路使其谐振在输入信号的频率点上:将示波器探头连接在调谐放大器的输出端即TH2上,调节示波

12、器直到能观察到输出信号的波形,再调节中周磁芯使示波器上的信号幅度最大,此时放大器即被调谐到输入信号的频率点上。8测量电压增益在调谐放大器对输入信号已经谐振的情况下,用示波器探头在TH1和TH2分别观测输入和输出信号的幅度大小,则 即为输出信号与输入信号幅度之比。9测量放大器通频带对放大器通频带的测量有两种方式,其一是用频率特性测试仪(即扫频仪)直接测量;其二则是用点频法来测量:即用高频信号源作扫频源,然后用示波器来测量各个频率信号的输出幅度,最终描绘出通频带特性,具体方法如下:通过调节放大器输入信号的频率,使信号频率在谐振频率附近变化(以20KHz或500KHz为步进间隔来变化),并用示波器观

13、测各频率点的输出信号的幅度,然后就可以在如下的“幅度一频率”坐标轴上标示出放大器的通频带特性。10测量放大器的选择性描述放大器选择性的最主要的一个指标就是矩形系数,这里用和来表示:式中,2为放大器的通频带;2和2分别为相对放大倍数下降至0.1和0.01处的带宽。用第9步中的方法,我们就可以测出2、2和2的大小,从而得到和的值注意:对高频电路而言,随着频率升高,电路分布参数的影响将越来越大,而我们在理论计算中是没有考虑到这些分布参数的,所以实际测试结果与理论分析可能存在一定的偏差。另外,为了使测试结果准确,应使仪器的接地尽可能良好。(二)双调谐小信号放大器的测试方法和测试步骤与单调谐放大电路基本

14、相同,只是在以下两个方面稍作改动:其一是输入信号的频率改为465KHz(峰峰值200V);其二是在谐振回路的调试时,对双调谐回路的两个中周要反复调试才能最终使谐振回路谐振在输入信号的频点上,具体方法是,按图1-3连接好测试电路并打开信号源及放大器电源之后,首先调试放大电路的第一级中周,让示波器上被测信号幅度尽可能大,然后调试第二级中周,也是让示波器上被测信号的幅度尽可能大,这之后再重复第一级和第二级中周,直到输出信号的幅度达到最大,这样,放大器就已经谐振到输入信号的频点上了。11同单调谐实验,做双调谐实验,并将两种调谐电路进行比较。四、实验报告要求1写明实验目的。2画出实验电路的直流和交流等效电路。3计算直流工作点,与实验实测结果比较。4整理实验数据,并画出幅频特性。五、实验仪器1高频实验箱1台2双踪示波器1台3万用表1只4扫频仪(可选)1台实验二集成选频放大器一、实验目的1熟悉集成放大器的内部工作原理。2熟悉陶瓷滤波器的选频特性。3掌握自动增益控制电路(AGC)的基本工作原理。二、实验内容1测量集成选频放大器的增益。2测量集成选频放大器的通频带。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 大杂烩/其它

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号