构建复合运动模型 解析物体运动问题抽象物理模型是解答物理问题的关键.在对简单问题进行模型化处理时,常可把它抽象为一个已知的物理模型,然而在对某些比较复杂问题进行模型化处理时,常常通过联想旧模型、创造新模型来构建复合模型(或称模型链).构建复合物理模型能将复杂问题转化为简单问题的组合,使问题得到顺利解答.本文通过结合具体教学实例就如何构建复合运动模型来巧解物理竞赛中复杂运动问题. 一、构建直线运动和圆周运动的复合运动模型 1.构建同一平面内直线运动和圆周运动的复合运动模型,解答摆线运动问题 例1 如图1所示,一质量为m、带电量为+q的小球从磁感应强度为B的匀强磁场中A点由静止开始下落,试求带电小球下落的最大高度h. 图1 分析与解 可以证明这个问题中带电小球运动轨迹是比较复杂的摆线,对高中学生而言从合运动角度分析这个问题比较困难.现构建小球有两个大小相等、方向相反的水平初速度v10、v20,所构建的这两个分运动与小球原有初始运动条件等效.现使小球的分运动v10产生的洛伦兹力为qv10B=mg则v10=mg/qB,因而小球的运动可视为沿水平方向以速度v10做匀速直线运动和在竖直平面内以速度v20做逆时针方向的匀速圆周运动的合运动.匀速圆周运动的半径R=mv20/qB=g(m/qB)2,因而小球在运动过程中下落的最大高度为Hm=2R=2g(m/qB)2. 通过构建匀速直线运动和匀速圆周运动复合模型,巧妙地解答了这个复杂问题. 2.构建不同平面内的直线运动和圆周运动的复合运动模型,解答螺旋运动问题 例2 如图2所示,两个平行板内存在互相平行的匀强电场和匀强磁场,电场强度为E,方向竖直向上,磁感应强度为B.在平行板的右端处有一荧光屏MN,中心为O,OO′既垂直电场方向又垂直荧光屏,长度为L.在荧光屏上以O点为原点建立一直角坐标系,y轴方向竖直向上,x轴正方向垂直纸面向外.现有一束具有相同速度和荷质比的带正电粒子束,沿O′O方向从O′点射入此电场区域,最后打在荧光屏上.若屏上亮点坐标为(L/3,L/6),重力不计.试求:(1)磁场方向;(2)带电粒子的荷质比.图2 分析与解 带电粒子在相互平行的匀强电场与磁场中运动为比较复杂的三维运动(螺旋线运动),根据力和运动独立作用原理,可以把此螺旋运动构建为y轴方向上的加速直线运动和xOz平面内的匀速圆周运动的复合运动模型.在xOz平面内构建出如图3所示的几何图景,由图3运用物理知识和三角形知识可得:磁场方向竖直向上,且图3 R=2L/3, sinθ=/2,θ=π/6.粒子在磁场中运动的时间为 t=T/6=πm/(3qB),结合y=Eqt2/(2m)=L/6得粒子的荷质比为 q/m=Eπ2/(3B2L). 二、构建简谐运动和圆周运动的复合运动模型 1.构建简谐运动和圆周运动的复合运动模型,巧解“狗追击狼”的问题 例3 如图4所示,一只狼沿半径为R的圆形轨道边缘按逆时针方向匀速跑动.当狼经过A点时,一只猎狗以相同的速度v从圆心O点出发追击狼.设追击过程中,狼、狗、O点始终在同一条直线上.问:狗沿什么轨迹运动?在何处追上狼? 分析与解 由于狗、狼、O点始终在同一条直线上,狗与狼沿运动轨道的切向的角速度相等,因而可以把狗的运动构建为径向运动和切向圆周运动的复合运动.设当狗离开圆心距离r时,狗的径向速度为vr,切向速度为vt,则图4 vt=ωr=v0r/R,由图4可知 vr=. 由此可知,狗在径向相对圆心O做简谐运动,狗的运动为径向简谐运动和切向圆周运动的复合运动.由简谐运动知识可知r=Rsinωt,任意时刻狗的直角坐标为 x=rcosθ,y=rsinθ,结合θ=ωt,得 x=Rsinωtcosωt=(1/2)Rsin(2ωt), y=Rsin2ωt=(1/2)R[1-cos(2ωt)],因而得狗的轨迹方程为 x2+(y-R/2)2=(R/2)2. 即狗的轨迹为一个半径为R/2的圆,在圆形轨道的B点追上狼. 有关例3问题在很多参考书上有各种不同解法,笔者认为上述运用构建圆周运动和简谐运动的复合运动模型的方法解答此问题最简捷. 2.构建简谐运动和圆周运动的复合运动模型,巧解“有心力作用”问题 例4 如图5所示,两个同轴的带电无限长半圆柱面,内外圆柱面的半径分别为a、b.设在图中a<r<b区域内只有径向电场,电势分布为U=klnb/r,其中k为常量.由此电势分布可得出电场强度分布为E=k/r.现有一质量为m、初速为v0、带电量为-q的粒子从左方A处射入,且v0既与圆柱面轴线垂直又与入射处的圆柱的直径垂直(不计带电粒子的重力).图5 (1)试问v0为何值时可使粒子沿半径为R(R>a)的半圆轨道运动? (2)若粒子的入射方向与上述v0偏离一个很小的角度β(仍然在图5所示的纸面内),其它条件不变,则粒子将偏离(1)中的半圆轨道.设新轨道与原半圆轨道相交于P点.试证明:对于很小的β角,P点的位置与β角无关,并求出P点的方位角θ=∠AOP的数值. 分析与解 (1)根据带电粒子在径向电场中做圆周运动的条件,即带电粒子所受的电场力等于粒子沿径向指向圆心O的向心力,得 (mv02/R)=qE=(qk/R),则v0=. (2)带电粒子运动轨迹看似比较复杂,但考虑到β较小,粒子沿切向的分速度为vt=v0cosβ≈v0,径向的分速度vr=v0sinβ≈v0β很小.若运用力和运动独立性原理,则把此复杂的运动可构建为沿着半径为R的匀速圆周运动和径向的振幅较小的简谐运动的复合运动.粒子沿径向做简谐运动的平衡位置为r0=R,设振动时的微小位移为x,回复力Fr满足 -qk/(r0+x)=Fr-mv2t/(r0+x),即 Fr=-[qk/(r0+x)-mv2t/(r0+x)],由角动量守恒,得 mv0r0=mvt(ro+x),由于xr0,运用数学近似处理,有 1/(r0+x)≈(1-x/r0)/r0, 1/(r0+x)3≈(1-3x/r0)/r03,结合qk/r0=mv20/r0,得 Fr=-2mv02x/r02.令k′=2mv20/r02.粒子沿径向做简谐运动的周期为 T=2π=πr0/v0. 粒子第一次到达平衡位置P点时经过时间为t=T/2,粒子做匀速圆周运动转过的角度为 θ=v0t/r0=π(/2). 三、构建两个简谐运动模型 1.构建两条直线上的复合简谐运动模型 例5 如图6所示,一弹性细绳穿过水平面上光滑的小孔O连接一质量为m的小球P,另一端固定于地面上A点,弹性绳的原长为OA,劲度系数为k.现将小球拉到B位置使OB=L,并给小球P以初速度v0,且v0垂直OB.试求:(1)小球绕O点转动90°至C点处所需时间;(2)小球到达C点时的速度.图6 分析与解 (1)设OB为x轴方向,OC为y轴方向,当小球和O点的连线与x轴成θ角且与O点相距为r时,弹性绳对小球的弹力为F=kr.将力F沿着x、y两个方向分解,有 Fx=-Fcosθ=-krcosθ=-kx, Fy=-Fsinθ=-krsinθ=-ky. 由此可知,小球在x方向做初速度为零的简谐运动,在y方向上做初速度为v0的简谐运动,小球运动可视为两个简谐运动组成的复合运动模型.小球到达C点时,Fx=0,即小球恰好经过x轴方向上做简谐运动的平衡位置,故小球从B点运动到C点所经过的时间为小球沿x轴方向做简谐运动的周期的四分之一,即 t=T/4=(π/2). (2)因为小球到达C点时在y轴方向上速度为零,所以小球在C点的速度就是在x轴方向上的最大速度,则 vC=vxmax=ωL=L. 2.构建双振子复合模型,解答多体振动问题 例6 如图7所示,质量为2m的均匀带电球M的半径为R,带电量为+Q,开始静止在光滑的水平面上.在通过直径的直线上开一个很小的绝缘、光滑的水平通道.现在球M的最左端A处,由静止开始释放一质量为m、带电量为-Q的点电荷N.若只考虑两电荷间的相互静电力.试求点电荷运动到带电球M的球心时两带电体的速度.图7分析与解 均匀带电球M在球内离球心距离为x处产生的电场强度为E=kQx/R3,点电荷N在此处所受的电场力为FN=kQ2x/R3,此时带电球M所受的电场力也为FM=kQ2x/R3,因而可将此系统构建为类似如图8所示的双振子相对质心O′点做简谐运动.由质心运动定理可知,系统的质心O′点静止不动,质心O′点距开始静止的球心O点的距离为x′,则 图8 x′=(mR/M+m)=(R/3).以质心O′为双振子振动的平衡位置,令k0=kQ2/R3,N相对质心振动等效弹簧劲度系数为kN=3k0/2、振幅为AN=2R/3;球M相对质心振动等效弹簧劲度系数kM=3k0、振幅为AM=R/3.N到达球心时对应于两振子都到达平衡位置,由简谐运动知识得,此时点电荷N、球M的速度分别为vN=AN=2R/3,vM=AM=R/3.连接体问题的求解思路【例题精选】 【例1】在光滑的水平面上放置着紧靠在一起的两个物体A和B(如图),它们的质量分别为mA、mB。
当用水平恒力F推物体A时,问:⑴A、B两物体的加速度多大?⑵A物体对B物体的作用力多大?分析:两个物体在推力的作用下在水平面上一定做匀加速直线运动对整体来说符合牛顿第二定律;对于两个孤立的物体分别用牛顿第二定律也是正确的因此,这一道连接体的问题可以有解解:设物体运动的加速度为a,两物体间的作用力为T,把A、B两个物体隔离出来画在右侧因为物体组只在水平面上运动在竖直方向上是平衡的,所以分析每个物体受力时可以只讨论水平方向的受力A物体受水平向右的推力F和水平向左的作用力T,B物体只受一个水平向右的作用力T对两个物体分别列牛顿第二定律的方程:对mA满足 F-T= mAa ⑴对mB满足 T = mBa ⑵⑴+⑵得 F =(mA+mB)a ⑶经解得: a = F/(mA+mB) ⑷将⑷式代入⑵式可得 T= FmB/(mA+mB)小结:①解题时首先明确研究对象是其中的一个物体还是两个物体组成的物体组如果本题只求运动的加速度,因为这时A、B两物体间的作用力是物体组的内力和加速度无关,那么我们就可以物体组为研究对象直接列出⑶式动力学方程求解。
若要求两物体间的作用力就要用隔离法列两个物体的动力学方程了②对每个物体列动力学方程,通过解联立方程来求解是解决连接体问题最规范的解法,也是最保险的方法,同学们必须掌握例2】如图所示,5个质量相同的木块并排放在光滑的水平桌面上,当用水平向右推力F推木块1,使它们共同向右加速运动时,求第2与第3块木块之间弹力及第4与第5块木块之间的弹力 分析:仔细分析会发现这一道题与例1几乎是一样的把第1、第2木块看作A物体,把第3、4、5木块看作B物体,就和例1完全一样了因5个木块一起向右运动时运动状态完全相同,可以用整体法求出系统的加速度(也是各个木块共同加速度)再用隔离法求第2与第3木块之间弹力,可以以第3、4、5木块为一个研究对象,也可以第1、2木块为一个研究对象 解:(1)如图所示,。