对于结晶性高分子固体急速冷却得到的非晶或低结晶度的高聚物材料,在升温过程中会产生 结晶使模量上升这时如采用间歇加载的方式进行温度■形变测量,就会发现当温度达到Tg 后形变上升,然后随结晶过程的进行变形又会下降科学出版社高分子科学简明教程 244聚合物的热性质:小分子的热运动方式有振动/转动和平动,是整个分子链的运动,称为 布朗运动高分子的热运动除了上述分子运动之外,分子链中的一部分(如链段,侧链,侧 基,支链)也存在相应的各种运动(微布朗运动),所以高分子的热运动比小分子复杂的多 在高分子的各种运动单元中,链段是最重要的,高分子材料的许多特性与链段的运动直接相 关高分子的热运动有以下特点:(1) 分子运动是一个松弛(relaxation)过程在一定的外力和温度条件下,高分子从 一种平衡状态(state)通过分子的热运动达到新的平衡状态,需要克服运动时运动单元所 受到的摩擦力,这个克服摩擦力的过程称为松弛过程松弛是一个缓慢的过程2) 分子运动与温度有关温度升高分子增加能量,同时聚合物的体积膨胀,增大运动 空间形变-温度曲线: 在一定的负荷和等速升温下,聚合物形变的大小与温度的关系曲线称为形变-温度曲线, 又温度-形变曲线,或称为热机械曲线(thermomechanical curve)。
实验仪器是热机械分析 仪(TMA thermomechanical analyzer)根据试样的形状、状态(纤维、薄膜、片状或块状) 选择合适的测定方法针入法,压缩法,拉伸法(薄膜)严格来说Tg(玻璃化转变温度)是一个温度范围Glass state glass t ransi tion rubbery state viscoelas tic t ransi tion(粘弹转变 区)viscous flow state (粘流态,即液态)高弹态在形变-温度曲线上是一个平台,这是由于链段运动随温度的升高而加剧能给出更 大的变形,另一个方面弹性恢复力随着升温而增加更能抵抗形变,这两个因素相互抵消的结 果粘弹转变区聚合物开始出现流动性,形变迅速增加此转变温度称为流动温度,记做Tf.如果高分子有交联,低交联度时可以观察到Tg但没有Tf,即不发生粘流;高交联度时(如 酚醛树脂等热固性塑料)连Tg也没有结晶聚合物的形变-温度曲线与非结晶聚合物有很大不同当结晶度小于 40 %时,还能 观察到Tg ;当结晶度大于40 %时,Tg观察不到或者不明显从Tg到Tm这一段温度区 内不是高弹态,因为结晶使弹性变差,性能很像皮革,所以称为皮革态。
另一方面,对于一 般的分子质量,曲线在Tm有一个突变;对于相对分子质量很高的样品,温度高于Tm还不能 发生流动,在更高的温度Tf出现之后才会流动形变-温度曲线也常用另一种形式表示,即模量■温度曲线因为模量E,形变£和应力Q 遵循胡克定律二E £ ,所以在一定应力下,模量与形变是倒数关系,随温度的升高模量减小如果用动态热力分析仪(DMA)在交变应力下测定聚合物模量随温度的变化,能灵敏地检 测到玻璃态下比链段小的运动单元(如侧基,侧链)从冻结到运动过程的转变,称为多重转 变DMA初反映E-T关系之外,还检测损耗角正切(力学内耗)Tan6前者变现为台阶状, 后者变现为峰形,对于各个转变他们是相互对应因为对于非晶或结晶高分子,Tg或Tm分 别称为主转变,a转变或主松弛,小运动单元的转变称为次级转变(secondary transi tion) 或者次级松弛(secondary relaxation),从温度由高到低依次命名为B转变,Y转变,& 转变用TMA则难以观察到次级转变次级转变中最重要的是B转变,它对应仅次于链段的最大运动单元的运动,如聚苯乙烯的 B转变是苯基的内旋转B转变温度有时相应于脆化温度Tb,如果Tb或者TB高于室温,则 材料在室温下处于脆性的,例如聚苯乙烯(TB=50°C)是很脆的,而聚碳酸酯(TB=-100°C)在室温下是韧性的。
Tg是链段运动开始(解冻)的温度,对于塑料来说,Tg是使用的最高温度;对于橡胶来 说,Tg是使用的最低温度Tg的测定:出了温度-形变曲线之外,还包括膨胀计法和DSC法Tg 强烈依赖于测定的方法和测定的条件,不同的方法和条件得到的测定值不同,而且转 变温度范围很宽显然Tg不是热力学相变温度,因为相变温度不会随测定速率的改变为改 变Tg实际上只是高分子链段运动的松弛过程玻璃化转变温度理论)自由体积理论认为, 非晶高分子中分子之间排列不紧密,分子间有较大的空隙,称为自由体积(free volume), 自由体积提供了链段活动的空间,链段通过转动和位移而改变构象在Tg以下时,链段的运动被冻结,自由体积Vf也处于冻结状态,其“空隙”的尺寸和 分布基本上保持固定Tg为自由体积降至最低值的临界温度,在此温度下自由体积提供给 的空间不足以使聚合物分子链发生构象调整随着温度的升高,玻璃态聚合物的体积膨胀只 是由于分子的振幅、键长和键角等变化,即分子占有体积V0的膨胀(热胀冷缩)而在Tg 以上时,自由体积开始膨胀,为链段运动提供了充足的空间,链段由冻结状态进入运动状态 随着温度的升高,聚合物体积膨胀除分子占有体积膨胀外,还有自由体积的膨胀,体积随温 度的变化率比Tg以下时大。
因此聚合物的比体积-温度曲线在Tg时发生转折实验表明,对于不同的聚合物,玻璃态时的自由体积分数为常数,都为 %DSC法:聚合物在进行玻璃化转变时,虽然没有放热或者吸热效应,但是比热容会改变,因 此在DSC曲线上表现为基线向吸热方向偏移聚合物的耐热性:250聚合物保持其外形和固有力学性质的最低温度用来表征聚合物的耐热性,它相当于聚合物 的Tg(对于非晶态)、Tm(对于晶态)、分解温度(decomposition temperature) (Td对于交 联聚合物对于橡胶,Tg是使用下限,Td使用上限高弹态:非晶聚合物在Tg和Tf之间所处的物理状态称为高弹态橡胶在室温下就处于高弹态高 弹态是基于链段运动所特有的力学状态,主要特点有:(1)弹性模量很小,即在不大的外力作用下就可以发送很大的变形2)形变时有热效应普通固体材料拉伸时吸热,回缩时放热,并且热效应极小3)高弹态具有可恢复的弹性的本质是“熵弹态”流动温度和粘流态热塑性塑料和橡胶的成型都是聚合物在粘流态下进行的流动温度Tf是加工的最低温度, 实际上为了提高流动性和减少弹性变形,通常加工温度比Tf高,但小于分解温度Td. Tf是 整个分子链开始运动的温度。
Tf与相对分子质量有很大的关系,相对分子质量越高,Tf越 高,由于相对分子质量分布不均匀,多分散性所以Tf不是一个明确的数值,而是一个较宽 的温度区域这也是为什么曲线上Tf的转折不如Tg清晰的原因。