焦炉煤气PSA制氢项目可行性研究报告

上传人:博****1 文档编号:433115071 上传时间:2023-03-15 格式:DOC 页数:27 大小:235.52KB
返回 下载 相关 举报
焦炉煤气PSA制氢项目可行性研究报告_第1页
第1页 / 共27页
焦炉煤气PSA制氢项目可行性研究报告_第2页
第2页 / 共27页
焦炉煤气PSA制氢项目可行性研究报告_第3页
第3页 / 共27页
焦炉煤气PSA制氢项目可行性研究报告_第4页
第4页 / 共27页
焦炉煤气PSA制氢项目可行性研究报告_第5页
第5页 / 共27页
点击查看更多>>
资源描述

《焦炉煤气PSA制氢项目可行性研究报告》由会员分享,可在线阅读,更多相关《焦炉煤气PSA制氢项目可行性研究报告(27页珍藏版)》请在金锄头文库上搜索。

1、焦炉煤气PSA制氢目 录前 言3第一节 吸附工艺原理51.1 吸附的概念51.2 吸附的分类61.3 吸附力71.4 吸附热91.5 吸附剂91.6 吸附平衡121.7 PSA-H2工艺的特点15第二节 PSA-H2流程选择分析172.1 TSA与PSA流程的选择172.2 真空再生流程与冲洗再生流程的选择182.3 均压次数的确定18第三节 PSA-H2流程描述193.1 工艺流程简图193.2工艺流程简述19231工艺方案的选择19232本装置工艺技术特点1924工艺流程简述21241预净化工序100#(参见图P0860-32-101)21242压缩及预处理工序200#(参见图P0860-

2、32-201、P0860-32-202)21243变压吸附提氢工序300#(参见图P0860-32-301)22244脱氧干燥工序400#(参见图P0860-32-401)2325装置布置(参见图P0860-33-01)2326主要工艺控制指标24第四节 PSA-H2操作参数的调整254.1 相关参数对吸附的影响254.2 吸附压力曲线及其控制方式254.3 关键吸附参数的设定原则及自动调节方式264.4 提高PSA-H2装置可靠性的控制手段27第五节 PSA-H2装置注意事项295.1 吸附剂装填注意事项295.2 生产注意事项29前 言吸附分离是一门古老的学科。早在数千年前,人门就开始利用

3、木炭、酸性白土、硅藻土等物质所具有的强吸附能力进行防潮、脱臭和脱色。但由于这些吸附剂的吸附能力较低、选择性较差,因而难以大规模用于现代工业。变压吸附(Pressure Swing Adsorption)气体分离与提纯技术成为化学工业的一种生产工艺和独立的单元操作过程,是在本世纪六十年代迅速发展起来的。这一方面是由于随着世界能源的短缺,各国和各行业越来越重视低品位资源的开发与利用,以及各国对环境污染的治理要求也越来越高,使得吸附分离技术在钢铁工业、气体工业、电子工业、石油和化工工业中日益受到重视;另一方面,六十年代以来,吸附剂也有了重大发展,如性能优良的分子筛吸附剂的研制成功,活性炭、活性氧化铝

4、和硅胶吸附剂性能的不断改进,以及ZSM特种吸附剂和活性炭纤维的发明,都为连续操作的大型吸附分离工艺奠定了技术基础。由于变压吸附(PSA)气体分离技术是依靠压力的变化来实现吸附与再生的,因而再生速度快、能耗低,属节能型气体分离技术。并且,该工艺过程简单、操作稳定、对于含多种杂质的混合气可将杂质一次脱除得到高纯度产品。因而近三十年来发展非常迅速,已广泛应用于含氢气体中氢气的提纯,混合气体中一氧化碳、二氧化碳、氧气、氮气、氩气和烃类的制取、各种气体的无热干燥等。而随着我国对油品质量的要求越来越高,企业燃油产品柴汽比的提高、进口原油加工量的增加和对节能、环保的越来越重视,石化行业对氢气的需求在近几年内

5、增长速度极快,变压吸附氢提纯(简称PSA-H2)技术作为一种高效、节能的高纯氢提取技术也得到了越来越广泛的重视。自一九六二年美国联合碳化物公司(UCC)第一套工业PSA制氢装置投产以来,UCC公司、Haldor Topsoe公司、Linder公司等已先后向各国提供了近千套变压吸附制氢装置。与国外相比,国内的变压吸附技术起步较晚,特别是在PSA装置大型化技术方面较为落后,以至在七、八十年代,我国的大型变压吸附装置完全依赖进口。为改变这种状况,我们进行了坚持不懈的努力,终于成功地完成了变压吸附计算机集成操纵技术和高性能三偏心金属密封程控蝶阀的开发工作,并研制成功了比国外制氢分子筛吸附容量更大、强度

6、更高的新型5A制氢分子筛。从而实现了大型变压吸附装置国产化关键技术的突破,达到了国外同类装置的先进水平。第一节 吸附工艺原理1.1 吸附的概念吸附是指:当两种相态不同的物质接触时,其中密度较低物质的分子在密度较高的物质表面被富集的现象和过程。其实质就是在两相的交界面上,物质的浓度会自动发生变化的现象和过程。具有吸附作用的物质(一般为密度相对较大的多孔固体)被称为吸附剂,被吸附的物质(一般为密度相对较小的气体或液体)称为吸附质。由于分子是在运动的。因此,作为吸附质的任何一个分子,当它在空间漫游时,既可能相互碰撞,也可能碰撞在固体(吸附剂)的表面上。这种碰撞分弹性和非弹性碰撞。前者停留时间极短,且

7、反射角等于入射角。而非弹性碰撞分子则贴在表面上一些时间,然后离开,但离去的方向与来时的方向无关。在大多数的情况下,碰撞表面的吸附质分子要在表面上停留一些时间,其时间长短取决于多种因素,如分子碰撞在表面上的位置、表面的性质、分子的性质、表面的温度、分子的动能等等。从一个单位面积的表面来看,我们可以推定在一定条件下,单位时间内碰撞表面的分子数是有一个动态平衡的。因此,当表面上浓聚(停留)一些分子时,此种现象就被我们称为“吸附”。在单位表面积上浓聚的分子数B取决于碰撞表面的分子数n及其在表面上停的时间Z:B=nZ I/cm2根据maxwele的统计学说,可以推导出: NPn = 2MRT此外,气体常

8、数R8.315107尔格0K一克分子阿佛加德罗常数N8.0251023M=气体的分子量P气体分子的分压(毫米汞柱)T温度0KPMTn = 3.521022 举个例来说,在20时,湿度为1% 的空气中,水蒸气的分压是0.17汞柱,这已是相当干燥了。但根据上式计算,在平衡时,每秒钟还有8.461018个水分子碰撞到12的表面上。因此,n的巨大数值使吸附现象可以很大的速度进行,即几乎是瞬间地进行。但是应该说清楚,在存在吸附剂(例如硅胶等干燥剂)时,则仅是接近表面的一层气体才有这样大的速度。当紧靠表面的空气中的水分子被吸附以后,吸附过程就显著减慢。这有两方面的原因:1 吸附剂的活性表面少了;2 水分子

9、的进一步供应要从远方的空气中来,这就取决于水分子在空气中的扩散速度。可以设想,当气体分子落在表面上以后,就与组成表面的原子交换能量,当停留时间足够长时,它们之间还将达到热平衡。与此同时,被吸附的分子也会从表面的热能涨落中,取得足够的能量(因为组成表面的原子或分子是在不断振动的,这在热能涨落中,有部份的能量会重新转给吸附的气体分子)而重新离开表面,这样就组成了吸附的动态平衡。1.2 吸附的分类吸附按其性质的不同可分为四大类,即:化学吸附、活性吸附、毛细管凝缩和物理吸附。化学吸附是指吸附剂与吸附质间发生有化学反应,并在吸附剂表面生成化合物的吸附过程。其吸附过程一般进行的很慢,且解吸过程非常困难。活

10、性吸附是指吸附剂与吸附质间生成有表面络合物的吸附过程。这种表面络合物的特点是:与被吸附的分子结合物的吸附剂的表面分子,仍留在吸附剂的结晶格子上。其解吸过程一般也较困难。毛细管凝缩是指固体吸附剂在吸附蒸汽时,在吸附剂孔隙内发生的凝结现象。一般需加热才能完全再生。物理吸附是指依靠吸附剂与吸附质分子间的分子力(即范德华力)进行的吸附。其特点是:吸附过程中没有化学反应,吸附过程进行的极快,参与吸附的各相物质间的平衡在瞬间即可完成,并且这种吸附是完全可逆的。物理吸附的吸附热不大(每克分子量吸附质约自十分之一仟卡至几仟卡),其数值范围与汽化热或凝结热相同。变压吸附(PSA)气体分离装置中的吸附主要为物理吸

11、附。变压吸附气体分离工艺过程之所以得以实现是由于吸附剂在这种物理吸附中所具有的两个基本性质:一是对不同组分的吸附能力不同,二是吸附质在吸附剂上的吸附容量随吸附质的分压上升而增加,随吸附温度的上升而下降。利用吸附剂的第一个性质,可实现对混合气体中某些组分的优先吸附而使其它组分得以提纯;利用吸附剂的第二个性质,可实现吸附剂在低温、高压下吸附而在高温、低压下解吸再生,从而构成吸附剂的吸附与再生循环,达到连续分离气体的目的。1.3 吸附力吸附剂表面之所以有吸附能力是由于处在两相边界的分子的特殊状态。在同一个相的内部,每一个分子所经受的被吸往其他分子的吸力在各个方向上是相等的。而在两相边界上,分子所经受

12、的引力则不同。因为吸引它的分子位于不同的相中,而不同的相各自内部的分子引力是不相同的。作用在边界分子上力量的这种不平衡现象,使得这些分子具有与相内部的分子不同的特质。如果吸力的合力是向该相的内部,则该相表面的状态便表现为表面层收缩的能力,如通常所说,能够吸附与它相接触的另一相中的分子。气体的分子能在吸附剂的表面停留一些时间,如前所述,主要是由于吸附力的存在,即分子间的作用力的存在。这种作用力可以分成三种:1 极性分子与极性分子之间的定向极化作用;2 极性分子与非极性分子之间的变形极化作用;3 非极性分子与非极性分子之间的瞬时偶极矩。归纳来看,分子间的作用力主要是由于带电粒子之间的静电作用而形成

13、的,一般称为范德华力。根据理论推算,范德华力是与分子间的距离的七次方成反比的(1r7),所以,吸附现象可以模拟为这样:当气体分子与表面的距离愈近时(r)吸引力就愈来愈大,但当两个分子接近到它们的电子云相互重叠时,就在产生一种相互排斥的力,当分子继续接近时,排斥力的增长比吸引力的增长快得多。因此,真正的分子引力:f = C1/rm-C2/rn对范德华力来说,m=913,n=47,右边第一项是引力,第二项是斥力,净吸引力就是二者之差,这两种力的平衡使气体分子在吸附剂表面一段时间放出能量以后又随着固体分子的振动再获得一定能量,以后就离开吸附区,回到气相。由此可知:1 吸附力与气体(吸附质)分子、吸附

14、剂分子的本身性质有关(例如:极化率、活性表面积等);2 吸附平衡与气体分子浓度,作用场的温度有关;3 吸附作用与吸附剂的使用情况有关(再生得好不好,活化处理得好不好等)。除了吸附力以外,有的吸附剂(如分子筛、沸石灰还有晶格“筛分”的特性,气体分子的平均直径必须小于其微孔的直径,才能抵达吸附表面。利用这种筛分作用,有时可使气体混合物得到更有效的分离。常用的吸附剂从吸附力来分可以分成四大类,如图1所示:图1吸附剂分类(按吸附力分)(大)分子大小(小)非 极 性-极性饱和结合-不饱和结合炭质吸附剂 硅铝系吸附剂 硅胶I活性炭 铝胶活性氧化铝 活性白土炭分子筛 沸石系列分子筛 1.4 吸附热在吸附和解吸过程机理中,吸附热是表征物理吸附和活性吸附的重要标志之一。气体或液体混和物和吸附剂相接触时,吸附质被吸附剂所吸附,伴随着吸附过程发生能量效应,是吸附质进入吸附剂表面和毛细孔的重要特征。吸附热可以准确地表示吸附现象的物理或化学(活性)本质以及吸附剂的活性,对于了解固体表面的结构和非均一性都有帮助。不同的吸附剂对不同的组份的吸附热均不相同,水分的吸附热一般较大。吸附热的产生将使吸附剂和气流温度升高,产生对吸附不利的影响,特别对于吸附质浓度高,吸附量大的吸附过程,影响更大,因此对于吸附质浓度高,吸附量大的吸附

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号