过程装备与控制工程课程设计

上传人:cn****1 文档编号:432942321 上传时间:2023-01-04 格式:DOC 页数:47 大小:510.50KB
返回 下载 相关 举报
过程装备与控制工程课程设计_第1页
第1页 / 共47页
过程装备与控制工程课程设计_第2页
第2页 / 共47页
过程装备与控制工程课程设计_第3页
第3页 / 共47页
过程装备与控制工程课程设计_第4页
第4页 / 共47页
过程装备与控制工程课程设计_第5页
第5页 / 共47页
点击查看更多>>
资源描述

《过程装备与控制工程课程设计》由会员分享,可在线阅读,更多相关《过程装备与控制工程课程设计(47页珍藏版)》请在金锄头文库上搜索。

1、1过程装备与控制工程课程设计1 设计概述1.1 设计目的和意义工程设计是工程建设中一个重要的环节,是工程项目实施的依据。没有一个成熟的工程设计,就不可能有一个良好的实施结果,甚至会导致工程项目的失败。作为过控专业的学生,除了要有坚实的理论基础外,还必须掌握一些工程方面的知识,才能成为合格的自动化工程技术人员。通过此次的工程设计,让我们能建立起过程控制工程设计的概念,对过程控制工程设计有一整体的了解。特别是在老师的指导下,进行自控工程设计的训练,使我们在毕业后走上工作岗位,如果在自控工程领域工作,可大大缩短熟悉的过程。可以说自控工程设计是我们过控专业学生的一项基本功,今后无论从事本学科领域的哪方

2、面工作,都是极为有用的。自控工程设计是为了实现生产过程的自动化,用图纸资料和文字资料的形式表达出来全部工作。也是我们工科专业学生加强工程实际观念,进行专业知识全面综合运用的一个极好的过程。自控工程设计是运用过程控制工程的知识,针对某生产工艺流程,实施自控方案的具体体现。完成自控工程设计,既要掌握控制理论及控制工程的基本理论,又要熟悉自动化技术工具的使用方法及型号、规格、价格等信息,而且要学习本专业的有关工程实际知识,如项目概念及项目运作方式、招标及投标、工程设计的程序和方法、仪表安装方式及常用设备材料的规格、型号等。在经过一次自控工程设计的全面训练后,能使我们深深体会到各专业课程所学知识的有机

3、结合和综合应用的重要性。课程设计密切结合过程工业实际的实践环节之一,是学习完过程控制工程课程和下厂实习后进行的一次全面的综合练习。其目的在于加深对过程控制工程设计思想的理解,掌握过程控制领域常用和有效的控制方案和控制系统,掌握过程工业典型操作单元的控制方案和系统特点;并接受严格和系统的实验操作训练,从而为以后的毕业环节工作和担负实际工程任务打下良好和坚实的基础。1.2 课程设计任务1.2.1工程设计的任务自控工程设计的基本任务是负责工艺生产装置于公用工程、辅助工程系统的控制,检测仪表、在线分析仪表和控制及管理用计算机等系统的设计以及有关的顺序控制、信号报警和联锁系统、安全仪表系统(SIS)和紧

4、急停车系统(ESI)的设计。完成这些基本任务时,还要考虑自控所用的辅助设备及附件、电气设备材料、安装材料的选型设计;自控的安全技术措施和防干扰、安全设施的设计;以及控制室、仪表车间与分析器室的设计。在这个“新体制”中,列出自控工程设计的八项任务: 负责生产装置、辅助工程和公用工程系统的检测、控制、报警、联锁/停车和监控/管理计算机系统的设计; 负责检测仪表、控制系统及其辅助设备和安装材料的选型设计; 负责检测仪表和控制系统的安装设计; 负责DCS、PLC、SIS、ESD和上位计算机(监控、管理)的系统配置、功能要求和设备选型,并负责或参加软件的编制工作; 负责现场仪表的环境防护措施的设计; 接

5、受工艺、系统和其他主导专业的设计条件,提出设备、管道、电气、土建、暖通和给排水等专业的设计条件; 负责控制室、分析器室以及仪表车间的设计; 负责工厂生产过程计量系统的设计。1.2.2工程设计内容按照当前实施的设计“新体制”的要求,自控工程设计阶段的工作可归纳为以下六个方面的内容: 根据工艺专业提出的监控条件绘制工艺控制图(PCD: Process Control Drawing); 配合系统专业绘制各版管道仪表流程图(P&ID: Piping and Instrumentation Drawing); 征集研究用户对P&ID及仪表设计规定的意见; 编制仪表请购单,配合采购部门开展仪表和材料的采

6、购工作; 确定仪表制造上的有关图纸,按仪表制造商返回的技术文件,提交仪表接口条件,并开展有关设计工作; 编(绘)制最终自控工程设计文件。在设计工作中,必须严格的贯彻执行一系列技术标准和规定,根据现有同类型工厂或实验装置的生产经验及技术资料,使设计建立在可靠的基础上。在设计过程中,应对工程的情况、国内外自动化水平、自动化技术工具的制造质量和供应情况,以及当前生产中的一些新技术发展的情况进行深入调查研究,才能有一个正确的判断,做出合理的设计。设计中还应加强经济观念,注意提高经济效益。自控工程设计常用的方法是有工艺专业提条件,而自控与工艺专业一起讨论确定控制方案,确定必要的中间储槽及其容量,确定合适

7、的设备余量,确定开、停车以及紧急事故处理方案等。这种设计方法对合理确定控制方案,充分发挥自控专业的主观能动性是有益的。但在实际设计过程中,尤其对一些新工艺,有时主要是由工艺专业提出条件确定控制方案,自控专业进行设计,在某些国外的公司就采用这种做法。2 设计说明2.1 HPF法脱硫工艺简介HPF法脱硫属湿式催化氧化法脱硫工艺,是PDS脱硫工艺4的改进工艺,两者的区别在于所使用的催化剂略有差异:前者使用对苯二酚加PDS及硫酸亚铁的复合催化剂(HPF),后者使用PDS催化剂。HPF催化剂在脱硫和再生过程中均有催化作用,是利用焦炉煤气中的氨做吸收剂,以HPF为催化剂的湿式氧化脱硫。煤气中的H2S等酸性

8、组分由气相进入液相与氨反应,转化为硫氢化铵等酸性铵盐,再在空气中氧的氧化下转化为硫。HPF法脱硫选择使用HPF(钴铁类)复合型催化剂,可使焦炉煤气的脱硫效率达到99%左右。2.1.1工艺原理和工艺流程HPF法脱硫工艺置于喷淋式饱和器法生产硫铵的工艺之后,从鼓风冷凝工段来的温度约55 的煤气,首先进入直接式预冷塔与塔顶喷洒的循环冷却水逆向接触,被冷至3035然后进入脱硫塔。预冷塔自成循环系统,循环冷却水从塔下部用预冷循环泵抽出送至循环水冷却器,用低温水冷却至2025后进入塔顶循环喷洒。采取部分剩余氨水更新循环冷却水,多余的循环水返回鼓风冷凝工段,或送往酚氰污水处理站。煤气在脱硫塔内与塔顶喷淋下来

9、的脱硫液逆流接触以吸收煤气中的硫化氢、氰化氰(同时吸收煤气中的氨,以补充脱硫液中的碱源)。脱硫后煤气含硫化氢降至50mgm3。左右,送入硫酸铵工段。其主要反应为:NH3 + H2O NH4OH (1)H2S + NH4OH NH4HS + H2O (2)2NH4OH + H2S (NH4)2 S + 2H2O (3)NH4OH + HCN NH4CN + H2O (4)NH4OH + CO2 NH4CO3 (5)NH4OH + NH4HCO3 (NH4)2CO3 + H2O (6)NH4OH + NH4HS + (x一1)S (NH4)2Sx + 2H20 (7)吸收了H2S、HCN的脱硫液从

10、脱硫塔底排出,经液封槽满流人反应槽。然后用脱硫循环液泵抽出后送人再生塔底部,再生塔的塔底部通人压缩空气,使溶液在塔内得以氧化再生。再生空气从再生塔顶放散管至洗净塔洗涤后放散,再生后的溶液从塔顶经液位调节器自流回脱硫塔循环再生。其主要反应为:再生反应NH4HS + 12O2 NH4OH + S (8)(NH4)2S + 12O2 + H2O 2NH4OH + S (9)(NH4)2S + 12O4 + H2O 2NH4OH + S (10)除上述反应外,还进行以下副反应2NH4HS + 2O2 (NH4)2S2O3 + H2O (11)2(NH4)2S2O3 + O2 2(NH4)2SO4 +

11、2S (12)浮于再生塔顶部扩大部分的硫磺泡沫,利用位差自流人泡沫槽,经澄清分层后,清液返回反应槽,硫泡沫用泡沫泵送人熔硫釜,经数次加热、脱水,再进一步加热熔融,最后排出熔融硫磺,经冷却后装袋外销。系统中不凝性气体经尾气洗净塔洗涤后放散。为避免脱硫液中副反应盐类积累影响脱硫效果,排出少量废液送往配煤。自鼓风冷凝送来的剩余氨水,经氨水过滤器除去夹带的煤焦油等杂质,进入换热器与蒸氨塔底排出的蒸氨废水换热后进入蒸氨塔,用直接蒸汽将氨蒸出。同时向蒸氨塔上部加一些稀碱液以分解剩余氨水中的固定铵盐。蒸氨塔顶部的氨气经分凝器和冷凝冷却器冷凝成含氨大于10 的氨水送人反应槽,以增加脱硫液中的碱源。其工艺流程图

12、56如下:图2.1 氨法HPF脱硫工艺流程2.1.2HPF法脱硫工艺特点u 以氨为碱源、HPF为催化剂的焦炉煤气脱硫脱氰新工艺,具有较高的脱硫脱氰效率(脱硫效率99%,脱氰效率80%),脱硫后煤气H2s含量在50mgm3以下。而且流程短,不需外加碱,催化剂用量小,脱硫废液处理简单,操作费用低,一次性投资省。u 硫磺收率一般为50% 60%,硫损失约为40%,这部分硫主要生成硫氰酸铵和硫代硫酸铵随废液流失,其废液量约为300500kg(1000m3h),废液回兑至配煤中,对焦炭的质量有一定的影响。u 硫膏产品质量不理想,外观多为暗灰色,纯度90%左右,产品销售难度大。若后续能再配置硫膏生产硫酸的

13、工艺,硫酸用于硫铵生产,则HPF工艺不失为一种完善的工艺。u 脱硫塔中可以填充聚丙烯填料(或波纹填料),不易堵塞,脱硫塔操作阻力较小,生产成本较低。u 脱硫废液送往配煤,工艺简单,对周边环境无污染。再生塔采用空气与脱硫液预混再生,再生过程排放的尾气量少,尾气含氨达25gm3左右,如直接排往大气不但损失了氨,而且还会污染环境,故尾气必须进一步净化处理。u 在脱硫过程中,因氨生成(NH4)2S2O3和NH4CNS等氨盐随废液回兑至配煤中,以及再生尾气带出而损失一部分。氨的损失率约15%。2.1.3HPF法脱硫操作条件山西南村化工设计焦炭年产量为1万吨。l 脱硫液中盐类的积累脱硫过程中生成的脱硫溶液

14、中(NH4)2S2O3和NH4CNS,在催化再生过程中与氧反应生成NH3H2O后又重新参与脱硫反应,因此能降低脱硫过程中氨的消耗量。由于再生反应可控制NH4CNS的生成,故脱硫液中NH4CNS的增长速度较为缓慢。但脱硫液中的盐类积累到超过250gL时,对脱硫效率的影响很明显。l 煤气及脱硫液温度当脱硫液温度较高时,会增大溶液表面上的氨气分压,使脱硫液中氨含量降低,脱硫效率随之下降。但脱硫液的温度太低也不利于再生反应的进行,因此,在生产过程中宜将煤气温度控制在2535,脱硫液温度应控制在3540。l 脱硫液和煤气中的含氨量脱硫液中所含的氨由煤气供给,煤气中的含氨量对操作的影响很大,当氨硫物质的量

15、之比不小于1,煤气中煤焦油含量不大于50mgm3、含萘小于05gm3时,即使一塔操作,其脱硫效率也可达99左右,脱氰效率大于80,当氨硫物质的量之比小于1时,即使采用双塔脱硫工艺,也必须对操作参数适当调整后才能保证脱硫效率。当煤气含氨量小于3gm3时,脱硫液中所含的氨小于7gL时,脱硫效率就会明显下降。l 液气比对脱硫效率的影响增加液气比可使传质面迅速更新,以提高其吸收推动力,有利于脱硫效率的提高。但液气比达到一定程度后,脱硫效率的增加量不明显,反而会增加循环泵的动力消耗,故液气比也不宜太大。l 再生空气量与再生时间氧化lkg硫化氢的理论空气用量不足2m3,在实际再生生产中,考虑到浮选硫泡沫的需要,再生

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 商业/管理/HR > 销售管理

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号