风电场风能资源评估方法

上传人:人*** 文档编号:431709870 上传时间:2023-07-26 格式:DOC 页数:19 大小:76.50KB
返回 下载 相关 举报
风电场风能资源评估方法_第1页
第1页 / 共19页
风电场风能资源评估方法_第2页
第2页 / 共19页
风电场风能资源评估方法_第3页
第3页 / 共19页
风电场风能资源评估方法_第4页
第4页 / 共19页
风电场风能资源评估方法_第5页
第5页 / 共19页
点击查看更多>>
资源描述

《风电场风能资源评估方法》由会员分享,可在线阅读,更多相关《风电场风能资源评估方法(19页珍藏版)》请在金锄头文库上搜索。

1、word电力技术标准汇编 水电水利与新能源部分 第13册12GB/T 18710-2002风电场风能资源评估方法目 次前言1 围2 引用标准3 定义4 测风数据要求5 测风数据处理6 风能资源评估的参考判据附录A(提示的附录)数据订正的方法附录B(标准的附录)风况参数的计算方法附录C(提示的附录)订正后的风况数据报告格式(示例)附录D(提示的附录)风况图格式(示例)前 言1993推荐的风能转换系统选址方法(REMENDED PRACTICE FOR THE SITING OF WIND ENERGY CONVERSION SYSTEMS),以及美国国家可再生能源实验室规NREL/SR-440-

2、22223风能资源评估手册(WIND RESOURCE ASSESSMENT HANDBOOK)。本标准的附录B是标准的附录,附录A、附录C和附录D是提示的附录。本标准由科学技术部、国家电力公司提出。本标准由全国能源基础与管理标准化技术委员会新能源和可再生能源分技术委员会归口。本标准由中国水利水电建设工程咨询公司负责起草。本标准主要起草人:施鹏飞、朱瑞兆、娄慧英、易跃春、文峰、宏文。中华人民国国家标准风电场风能资源评估方法 GB/T18710-2002Methodlogy of wind energy resourceassessment for wind farm1 围本标准规定了评估风能资

3、源应收集的气象数据、测风数据的处理及主要参数的计算方法、风功率密度的分级、评估风能资源的参考判据、风能资源评估报告的容和格式。本标准适用于风电场风能资源评估。2 引用标准下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。在标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。GB/T 18709-2002 风电场风能资源测量方法3 定义本标准采用下列定义。31 风场 wind site拟进行风能资源开发利用的场地、区域或围。32 风电场 wind farm由一批风力发电机组或风力发电机组群组成的电站。33 风功率密度 wind pow

4、er density 与风向垂直的单位面积中风所具有的功率。34 风能密度 wind energy density在设定时段与风向垂直的单位面积中风所具有的能量。35 风速 wind speed空间特定点的风速为该点周围气体微团的移动速度。36 平均风速 average wind speed给定时间瞬时风速的平均值,给定时间从几秒到数年不等。37 最大风速 maximum wind speed10min平均风速的最大值。38 极大风速 extreme wind speed瞬时风速的最大值。39 风速分布 wind speed distribution用于描述连续时限风速概率分布的分布函数。31

5、0 威布尔分布 Weibull distribution经常用于风速的概率分布函数,分布函数取决于两个参数,控制分布宽度的形状参数和控制平均风速分布的尺度参数。311 瑞利分布 Rayleigh distribution经常用于风速的概率分布函数,分布函数取决于一个调节参数,即控制平均风速分布的尺度参数。注:瑞利分布是形状参数等于2的威布尔分布。312 日变化 diurnal variation以日为基数发生的变化。月或年的风速(或风功率密度)日变化是求出一个月或一年,每日同一钟点风速的月平均值或年平均值,得到0点到23点的风速(或风功率密度)变化。313 年变化 annual variati

6、on以年为基数发生的变化。风速(或风功率密度)年变化是从1月到12月的月平均风速(或风功率密度)变化。314 年际变化 interannual variation以30年为基数发生的变化。风速年际变化是从第1年到第30年的年平均风速变化。315 风切变 wind shear风速在垂直于风向平面的变化。316 风切变幂律 power law for wind shear表示风速随离地面高度以幂定律关系变化的数学式。317 风切变指数 wind shear exponent通常用于描述风速剖面线形状的幂定律指数。318 湍流强度 turbulence intensity风速的标准偏差与平均风速的比

7、率。用同一组测量数据和规定的周期进行计算。319 轮毂高度 hub height从地面到风轮扫掠面中心的高度。4 测风数据要求41 风场附近气象站、海洋站等长期测站的测风数据411 在收集长期测站的测风数据时应对站址现状和过去的变化情况进行考察,包括观测记录数据的测风仪型号、安装高度和周围障碍物情况(如树木和建筑物的高度,与测风杆的距离等),以及建站以来站址、测风仪器及安装位置、周围环境变动的时间和情况等。注:气象部门海洋站保存有规的测风记录,标准观测高度距离地面10m。1970年以后主要采用EL自记风速仪,以正点前10min测量的风速平均值代表这一个小时的平均风速。年平均风速是全年逐小时风速

8、的平均值。412 应收集长期测站以下数据:a)有代表性的连续30年的逐年平均风速和各月平均风速。注:应分析由于气象站的各种变化,对风速记录数据的影响。b)与风场测站同期的逐小时风速和风向数据。c)累年平均气温和气压数据。d)建站以来记录到的最大风速、极大风速及其发生的时间和风向、极端气温、每年出现雷暴日数、积冰日数、冻土深度、积雪深度和侵蚀条件(沙尘、盐雾)等。注:本标准中逐小时风速、风向、温度和气压数据分别是每个小时的平均风速、出现频率最大的风向、平均温度和平均气压。42 风场测风数据应按照GB/T 18709-2002年的规定进行测风,获取风场的风速、风向、气温、气压和标准偏差的实测时间序

9、列数据,极大风速及其风向。5 测风数据处理51 总则测风数据处理包括对数据的验证、订正,并计算评估风能资源所需要的参数。52 数据验证521 目的数据验证是检查风场测风获得的原始数据,对其完整性和合理性进行判断,检验出不合理的数据和缺测的数据,经过处理,整理出至少连续一年完整的风场逐小时测风数据。522 数据检验5221 完整性检验a)数量:数据数量应等于预期记录的数据数量。b)时间顺序:数据的时间顺序应符合预期的开始、结束时间、中间应连续。5222 合理性检验a)围检验,主要参数的合理围参考值见表1。表1 主要参数的合理围参考值主要参数合理围平均风速0小时平均风速40m/s风向0小时平均值3

10、60平均气压(海平面)94kPa小时平均值106kPab)相关性检验,主要参数的合理相关性参考值见表2。表2 主要参数的合理相关性参考值主要参数合理围50m/30m高度小时平均风速差值50m/10m高度小时平均风速差值50m/30m高度风向差值c)趋势检验,主要参数的合理变化趋势参考值见表3。表3 主要参数的合理变化趋势参考值主要参数合理变化趋势1h平均风速变化6m/s1h平均温度变化53h平均气压变化1kPa注:各地气候条件和风况变化很大,三个表中所列参数围供检验时参考,在数据超出围时应根据当地风况特点加以分析判断。523 不合理数据和缺测数据的处理5231 检验后列出所有不合理的数据和缺测

11、的数据及其发生的时间。5232 对不合理数据再次进行判别,挑出符合实际情况的有效数据,回归原始数据组。5233 将备用的或可供参考的传感器同期记录数据,经过分析处理,替换已确认为无效的数据或填补缺测的数据。524 计算测风有效数据的完整率,有效数据完整率应达到90%。有效数据完整率按下式计算:式中:应测数目测量期间小时数; 缺测数目没有记录到的小时平均值数目; 无效数据数目确认为不合理的小时平均值数目。525 验证结果经过各种检验,剔除掉无效数据,替换上有效数据,整理出至少连续一年的风场实测逐小时风速风向数据,并注明这套数据的有效数据完整率。编写数据验证报告,对确认为无效数据的原因应注明,替换

12、的数值应注明来源。此外,宜包括实测的逐小时平均气温(可选)和逐小时平均气压(可选)。53 数据订正531 目的数据订正是根据风场附近长期测站的观测数据,将验证的风场测风数据订正为一套反映风场长期平均水平的代表性数据,即风场测风高度上代表年的逐小时风速风向数据。532 当地长期测站宜具备以下条件才可将风场短期数据订正为长期数据:a)同期测风结果的相关性较好;b)具有30年以上规的测风记录;c)与风场具有相似的地形条件;d)距离风场比较近。533 应收集的长期测站有关数据见4.1.2。534 数据订正的方法见附录A。54 数据处理541 目的将订正后的数据处理成评估风场风能资源所需要的各种参数,包

13、括不同时段的平均风速和风功率密度、风速频率分布和风能频率分布、风向频率和风能密度方向分布、风切变指数和湍流强度等。542 平均风速和风功率密度月平均、年平均;各月同一钟点(每日0点至23点)平均、全年同一钟点平均。风功率密度的计算方法见附录B1。543 风速和风能频率分布以1m/s为一个风速区间,统计每个风速区间风速和风能出现的频率。每个风速区间的数字代表中间值,如5m/s风速区间为4.6m/s到5.5m/s。544 风向频率及风能密度方向分布计算出在代表16个方位的扇区风向出现的频率和风能密度方向分布。风能密度方向分布为全年各扇区的风能密度与全方位总风能密度的百分比。风能密度的计算方法见附录

14、B2。注:出现频率最高的风向可能由于风速小,不一定是风能密度最大的方向。545 风切变指数推荐用幂定律拟合,风切变幂律公式和风切变指数的计算方法见附录B3。如果没有不同高度的实测风速数据,风切变指数取1/7(0.143)作为近似值。注:近地层任意高度的风速,可以根据风切变指数和仪器安装高度测得的风速推算出来。估算风力发电机组发电量时需要推算出轮毂高度的风况。546 湍流强度风能资源评估中采用的湍流指标是水平风速的标准偏差,再根据相同时段的平均风速计算出湍流强度(IT)5461 湍流强度的计算方法见附录B4。5462 逐小时湍流强度。逐小时湍流强度是以1h最大的10min湍流强度作为该小时的代表值。546 订正后的风况数据报告格式(示例)见附录C。6 风能资源评估的参考判据61 编制风况图表将5.4条中处理好的各种风况参数绘制成图形。主要分为年风况和月风况两大类。风况图格式(示例)见附录D。611 年风况a)全年的风速和风功率日变化曲线图;

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 建筑/环境 > 施工组织

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号