毕业设计(论文)基于AT89C52的数字式压力表设计及实现

上传人:m**** 文档编号:430951207 上传时间:2024-01-29 格式:DOC 页数:19 大小:390.01KB
返回 下载 相关 举报
毕业设计(论文)基于AT89C52的数字式压力表设计及实现_第1页
第1页 / 共19页
毕业设计(论文)基于AT89C52的数字式压力表设计及实现_第2页
第2页 / 共19页
毕业设计(论文)基于AT89C52的数字式压力表设计及实现_第3页
第3页 / 共19页
毕业设计(论文)基于AT89C52的数字式压力表设计及实现_第4页
第4页 / 共19页
毕业设计(论文)基于AT89C52的数字式压力表设计及实现_第5页
第5页 / 共19页
点击查看更多>>
资源描述

《毕业设计(论文)基于AT89C52的数字式压力表设计及实现》由会员分享,可在线阅读,更多相关《毕业设计(论文)基于AT89C52的数字式压力表设计及实现(19页珍藏版)》请在金锄头文库上搜索。

1、基于AT89C52的数字式压力表设计及实现一 设计要求4位LED显示传感器调理电路A/D电路数据处理0 4.883v10v15vMAX197如1/2本数字式压力表传感器能够辨识-10kN到+10kN压力,需设计传感器供电电路,即10V稳压电路。传感器在量程范围内返回-17mV到+17mV电压,以供AD采样电路进行模拟到数字转换,为使原始数据能够达到足够采样精度,需设计调理电路及相应的供电电路。数据处理模块需设计计算机代码及相应的显示模块,如LED,用以用户查看当前的压力信息。二 器件选型2.1 传感器传感器默认为老师指定型号,由于提供了供电管脚及信号管脚,则可对该类传感器进行应用。2.2 调理

2、电路调理电路为实现放大及滤波功能,选用AD620及OP07,按照典型电路进行连接。其中AD620为低成本,高精度的单片仪器放大器,为8引脚SOIC塑封外形,见图1,其主要特点如表1。表1供电电源增益选择增益范围最大增益误差%带宽功耗-2.3至18V电阻编程1至10k0.7%1MHz最大650mV输入失调电压输入失调漂移输入偏置电流最小共模抑制比温度范围最大125uV最大1uV/摄氏度最大20nA93dB-40至85摄氏度图1 AD620塑封外形 图2 OP07塑封外形AD620具有高精度(最大非线性度40 ppm)、低失调电压(最大50 V)和低失调漂移(最大0.6 V/C)特性,是电子秤和传

3、感器接口等精密数据采集系统的理想之选。它还具有低噪声、低输入偏置电流和低功耗特性,使之非常适合ECG和无创血压监测 仪等医疗应用。由于其输入级采用Supereta处理,因此可以实现最大1.0 nA的低输入偏置电流。AD620在1 kHz时具有9 nV/Hz的低输入电压噪声,在0.1 Hz至10 Hz频带内的噪声为0.28 V峰峰值,输入电流噪声为0.1 pA/ Hz,因而作为前置放大器使用效果很好。同时,AD620的0.01%建立时间为15 s,非常适合多路复用应用;而且成本很低,足以实现每通道一个仪表放大器的设计。OP07芯片是一种低噪声,塑封见图2,非斩波稳零的双极性运算放大器集成电路。由

4、于OP07具有非常低的输入失调电压(对于OP07A最大为 25V),所以OP07在很多应用场合不需要额外的调零措施。OP07同时具有输入偏置电流低(OP07A为2nA)和开环增益高(对于OP07A为 300V/mV)的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放 大传感器的微弱信号等方面,以下为其部分特性:超低偏移: 150V最大。 低输入偏置电流: 1.8nA 。低失调电压漂移: 0.5V/ 。 超稳定,时间: 2V/month最大高电源电压范围: 3V至22V。2.3 AD模块模数转换模块选用MAX197进行模数转换,塑封图见图3。MAX197无需外接元器件

5、就可独立完成A/D转换功能。它可分为内部采样模式和外部采样模式,采样模式由控制寄存器的D5位决定。在内部采样控制模式 (控制位置0)中,由写脉冲启动采样间隔,经过瞬间的采样间隔(芯片时钟为2MHz时,为3ms),即开始A/D转换。在外部采样模式(D5=1)中,由 两个写脉冲分别控制采样和A/D转换。在第一个写脉冲出现时,写入ACQMOD为1,开始采样间隔。在第二个写脉冲出现时,写入控制字ACQMOD为 0,MAX197停止采样,开始A/D转换。这两个写脉冲之间的时间间隔为一次采样时间。当一次转换结束后,MAX197相应的INT引脚置低电平,通知 处理器可以读取转换结果。内部采样模式的数据转换时

6、序对于模拟到数字量的转换,时序要求非常严格,由于MAX197的数字信号输出引脚是复用的,要正确读 出转换结果,时序要求尤其重要。在一次采样开始前,可以通过单片机的8位数据线把这些控制字写入MAX197来初始化相应的参数。然后按照一定的时序进行 采样和转换。图3 MAX197塑封图对于模拟到数字量的转换,时序要求非常严格,由于MAX197的数字信号输出引脚是复用的,要正确读出转换结果,时序要求尤其重要。在一次采样开始前,可 以通过单片机的8位数据线把这些控制字写入MAX197来初始化相应的参数。然后按照一定的时序进行采样和转换。 图3中HBEN为12位数据高4位或低8位有效控制位,当此位为高时,

7、高4位数据有效,为低时低8位数据有效。可以通过控制这个引脚来读取12位的转换结果。2.4 数据处理模块数据处理模块选用AT89C52内核单片机,外围电路选用MAX232实现串口通信,LED用以显示用户期望数据。AT89C52是51系列单片机的一个型号,它是ATMEL公司生产的。AT89C52是一个低电压,高性能CMOS 8位单片机,片内含8k bytes的可反复擦写的Flash只读程序存储器和256 bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元,功能强大的AT89C52

8、单片机可为您提供许多较复杂系统控制应用场合。AT89C52有40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口,3个16位可编程定时计数器,2个全双工串行通信口,2个读写口线,AT89C52可以按照常规方法进行编程,但不可以在线编程(S系列的才支持在线编程)。其将通用的微处理器和Flash存储器结合在一起,特别是可反复擦写的Flash存储器可有效地降低开发成本。兼容MCS51指令系统 8k可反复擦写(1000次)Flash ROM 32个双向I/O口 256x8bit内部RAM 3个16位可编程定时/计数器中断 时钟频率0-24MHz 2个串行中断 可编程UART串行通道

9、 2个外部中断源 共6个中断源 2个读写中断口线 3级加密位 低功耗空闲和掉电模式 软件设置睡眠和唤醒功能 AT89C52P为40 脚双列直插封装的8 位通用微处理器,采用工业标准的C51内核,在内部功能及管脚排布上与通用的8xc52 相同,其主要用于会聚调整时的功能控制。功能包括对会聚主IC 内部寄存器、数据RAM及外部接口等功能部件的初始化,会聚调整控制,会聚测试图控制,红外遥控信号IR的接收解码及与主板CPU通信等。主要管脚有:XTAL1(19 脚)和XTAL2(18 脚)为振荡器输入输出端口,外接12MHz 晶振。RST/Vpd(9 脚)为复位输入端口,外接电阻电容组成的复位电路。VC

10、C(40 脚)和VSS(20 脚)为供电端口,分别接+5V电源的正负端。P0P3 为可编程通用I/O 脚,其功能用途由软件定义,在本设计中,P0 端口(3239 脚)被定义为N1 功能控制端口,分别与N1的相应功能管脚相连接,13 脚定义为IR输入端,10 脚和11脚定义为I2C总线控制端口,分别连接N1的SDAS(18脚)和SCLS(19脚)端口,12 脚、27 脚及28 脚定义为握手信号功能端口,连接主板CPU 的相应功能端,用于当前制式的检测及会聚调整状态进入的控制功能。P0 口P0 口是一组8 位漏极开路型双向I/O 口, 也即地址/数据总线复用口。作为输出口用时,每位能吸收电流的方式

11、驱动8 个TTL逻辑门电路,对端口P0 写“1”时,可作为高阻抗输入端用。在访问外部数据存储器或程序存储器时,这组口线分时转换地址(低8 位)和数据总线复用,在访问期间激活内部上拉电阻。在Flash 编程时,P0 口接收指令字节,而在程序校验时,输出指令字节,校验时,要求外接上拉电阻。P1 口P1 是一个带内部上拉电阻的8 位双向I/O 口, P1 的输出缓冲级可驱动(吸收或输出电流)4 个TTL 逻辑门电路。对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。与AT89C52 不同之处是,

12、P1.0 和P1.1 还可分别作为定时/计数器2 的外部计数输入(P1.0/T2)和输入(P1.1/T2EX),参见表1。Flash 编程和程序校验期间,P1 接收低8 位地址。表1.P1.0和P1.1的第二功能引脚号功能特性P1.0T2,时钟输出P1.1T2EX(定时/计数器2)P2 口P2 是一个带有内部上拉电阻的8 位双向I/O 口,P2 的输出缓冲级可驱动(吸收或输出电流)4 个TTL 逻辑门电路。对端口P2 写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口,作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。在访问外部程序存储器或16

13、位地址的外部数据存储器(例如执行MOVX DPTR 指令)时,P2 口送出高8 位地址数据。在访问8 位地址的外部数据存储器(如执行MOVX RI 指令)时,P2 口输出P2 锁存器的内容。Flash 编程或校验时,P2亦接收高位地址和一些控制信号。P3 口P3 口是一组带有内部上拉电阻的8 位双向I/O 口。P3 口输出缓冲级可驱动(吸收或输出电流)4 个TTL 逻辑门电路。对P3 口写入“1”时,它们被内部上拉电阻拉高并可作为输入端口。此时,被外部拉低的P3 口将用上拉电阻输出电流(IIL)。P3 口除了作为一般的I/O 口线外,更重要的用途是它的第二功能P3 口还接收一些用于Flash

14、闪速存储器编程和程序校验的控制信号。RST复位输入。当振荡器工作时,RST引脚出现两个机器周期以上高电平将使单片机复位。ALE/PROG当访问外部程序存储器或数据存储器时,ALE(地址锁存允许)输出脉冲用于锁存地址的低8 位字节。一般情况下,ALE 仍以时钟振荡频率的1/6 输出固定的脉冲信号,因此它可对外输出时钟或用于定时目的。要注意的是:每当访问外部数据存储器时将跳过一个ALE 脉冲。对Flash 存储器编程期间,该引脚还用于输入编程脉冲(PROG)。如有必要,可通过对特殊功能寄存器(SFR)区中的8EH 单元的D0 位置位,可禁止ALE 操作。该位置位后,只有一条MOVX 和MOVC指令

15、才能将ALE 激活。此外,该引脚会被微弱拉高,单片机执行外部程序时,应设置ALE 禁止位无效。PSEN程序储存允许(PSEN)输出是外部程序存储器的读选通信号,当AT89C52 由外部程序存储器取指令(或数据)时,每个机器周期两次PSEN 有效,即输出两个脉冲。在此期间,当访问外部数据存储器,将跳过两次PSEN信号。EA/VPP外部访问允许。欲使CPU 仅访问外部程序存储器(地址为0000HFFFFH),EA 端必须保持低电平(接地)。需注意的是:如果加密位LB1 被编程,复位时内部会锁存EA端状态。如EA端为高电平(接Vcc端),CPU 则执行内部程序存储器中的指令。Flash 存储器编程时,该引脚加上+12V 的编程允许电源Vpp,当然这必须是该器件是使用12V 编程电压Vpp。XTAL1振荡器反相放大器的及内部时钟发生器的输入端。XTAL2振荡器反相放大器的输出端。

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 大杂烩/其它

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号