太阳能电池各电性能参数

上传人:公**** 文档编号:427889651 上传时间:2023-02-23 格式:DOCX 页数:16 大小:106.21KB
返回 下载 相关 举报
太阳能电池各电性能参数_第1页
第1页 / 共16页
太阳能电池各电性能参数_第2页
第2页 / 共16页
太阳能电池各电性能参数_第3页
第3页 / 共16页
太阳能电池各电性能参数_第4页
第4页 / 共16页
太阳能电池各电性能参数_第5页
第5页 / 共16页
点击查看更多>>
资源描述

《太阳能电池各电性能参数》由会员分享,可在线阅读,更多相关《太阳能电池各电性能参数(16页珍藏版)》请在金锄头文库上搜索。

1、太阳能电池各电性能参数的本质及工艺意义 武宇涛电性能参数主要有:Voc,Isc,Rs,Rsh,FF,Eff,Irevl,电性能参数在生产过程中尤其是在实时的生产控制现场,非常及 时地反映了整个生产线生产工艺尤其是后道工序的动态变化情况,为 我们对产线的控制及生产设备工艺参数的实时调节起到了非常重要 的参考作用。从可控性难易角度来说,Voc,Rs,Rsh,主要和原材料及生产工艺 的本身特征相关,与工艺现场的调控波动性关系不是特别紧密,可称 之为长程可控参数。而Isc,FF, Irevl与工艺现场的调控联系紧密, 对各调控参数比较敏感,可称之为短程可控参数。当然我们最关心的是效率Effo而Eff则

2、是以上所有参数的 综合表现。太阳能电池的理论基础建立在以下几个经典公式之上:Voc=(KT/q) Xln(Isc/Io+l)FF=Pm/(Voc X Isc)=Vm X Im/Voc=(KT/q) Xln(NaNd/ni2)1(VocXIsc)Eff二Pm/(APin)二FF XVocXIsc/APin二FFXVocXJsc/Pin5图-2太阳能电池等效电路从上面5式我们可以看到,与效率直接相关的电性能参数主 要有:FF, Voc, Isc。在生产中我们还比较关心暗电流情况:Irevl,由1式可以看出,它与Voc有比较紧密地联系(实际也 是这样的)。为了更好地说明各参数间的联系,这里先录用几组

3、数据如下:线别Uo(:IscFFRsRsh EFFIre、16%sc8o2FF0P156CQ)618 8:!177.(2.0()388i 16.11%1.778.7356豳.1%.P156(也)616 8:!176.(6.0()433! 15.i3%6.0655.2M10.E-CELL(LY;27 7:!978.0.0()329)14.68%;!340.0320.33.8%5.表-1783%4%8%以上P156均系LDK片源。1,Voc由于光生电子-空穴对在内建场的作用下分别被收集到耗尽 层的两端,从而形成电势。所以我们认为Voc是内建电场即PN 结扫集电流的能力的直观表现。由上面公式1所反映

4、,Voc主要与电池片的参杂浓度(Nd)相 关。对于宽AEg的电池材料,相对会有比较高的Voc;但AEg 过高,又会导致光吸收效率的迅速下降(主要是长波段响应降 低),使I sc是降低,所以需要找到一个最佳掺杂深度值。另一方 面,高参杂又会引入更多的复合中心,使复合电流增加,同样也 降低了 Voc。所以在没有引起复合电流增加或者其增量比较小的 前提下,参杂浓度的提高对 Voc 总是有益的。在上表所示的三种成品电池片中,P156的片子与E-CELL 片子Voc有着显著的不同,这显然是由于冶金级硅的杂质浓度过 大导致的。而对于62栅线和71栅线的电池片,由于其总体参杂 浓度并没有显著的改变,所以其开

5、压并没有显著差别。从上表还 可以看出,E-CELL电池的Isc已经比比另两者有显著降低,我们 可以认为对于P156的正常多晶硅电池片其Voc在620mv左右达到了峰值。另外通过对高Voc电池片(如E-CELL)进行QE扫描发 现其长波长响应显著降低。在现在既定工艺背景下,在没有大的工艺改动下,对产线 的技术参数调整对 Voc 影响不会太大。在生产中,我们曾对各种 能够调节的参数进行了大量的调整,尤其是背电场和烧结温度参 数方面,但结果总是很不理想,比如P156的LDK的片子其整体 平均值变化范围也就是 618mv2mv 左右。基本上不可能达到像E-CELL GP156那样整体平均630mv的水

6、平。可见,Voc对后道工序的参数调节并不十分敏感。一句话,关于Voc,这是电池片子本身质量素质及现定工艺所共同决定的,从整体的统计数据来看它是一个比较稳定的不易发生较大波动的工艺参数,比如:煜辉和洛阳以及LDK各厂家 的电池片都有各自明显的电性能特征,尤其表现在 Voc 和 Isc 上。所以,在日常的生产过程中,我们应该更多地关注其他比较容 易波动且操控性更强的参数,比如 FF,Isc.2,FF如上面大名鼎鼎的太阳能电池的I-V曲线图T所示,FF的直观意义为上图中矩形与曲线所围成面积之比。它的本质意义如式 3所示, 即输出的有用功与产生的总体功率之比.它表现了电池片本身输出有 用功的能力,也即

7、其本身的内耗情况;对于高的FF,电池片本身对 所产生电能的消耗比例较小。而Eff如式所示,则是表现了电池片在 吸收了一定太阳能量后能够输出有用功的能力.另外,此曲线的两边的斜率也直观地展现了 Rsh与Rs的大小, 正如式 4所示。所以在电性能参数中,我们认为,FF, Rsh,Rs这三个参数是紧 密相连的一组。一般通过Rs和Rsh我们来直观地判断FF的好坏。即 Rs和Rsh主要影响FF,当然当他们性能很差时对Voc和Isc的影响 也是很显著的。如上表所示:虽然UMG电池片的效率很低,但是这并 不妨碍它可以达到比正常电池片还要高很多的FF。再对比单晶的情 况,虽然单晶具有比多晶更高的效率,但也不影

8、响它只具有和ECELL 相当的 FF。相对于Voc,FF更容易波动,且波动幅度有时也是很大的一般情 况下,在工艺过程中对FF影响比较大比较直接的主要是印刷工艺,再 具体地说主要是正面电极的印刷,而正面电极的印刷又是一个非常细 致的工艺,影响其质量的参数及因素又是相当多 (相对于前道各工序 来说),主要有印刷资料的选取,印刷网版的设计及印刷参数的调节. 由于前两项因素已经由工程师们设计选择好 ,所以对于工艺人员,主 要的工作是保证印刷出高质量的图形及确保各项参数在工艺范围内 可控.另外FF对烧结的调节不是很敏感而通常当FF较低时,我们也并 不太多地怀疑烧结是否匹配.正常情况下,FF的降低表明电池

9、片本身的内耗或漏电的增加, 而这也必然会在Rs或Rsh上反映出来。但是,我们也确实遇到了这 样的情况:印刷图形堪称完美,基本上没有虚印,栅线高度也正常,Rs及 Rsh也都正常,而FF就是比平常低了将近0.5左右!其原因到目前仍 然不是很清楚.2.1Rs硅太阳能电池等效串联电阻会影响其正向伏安特性和短路电流,而对开路电压没有影响,当然,对FF也有很大影响,当串联电 阻取不同值时太阳能电池的I-V特性如下图-4所示11:串联电阻变化时太阳能电池的i-v特性曲线太阳能电池的串联电阻由以下四部分组成:Rs=Rb+Rd+Rc+RmRb为基体材料本身的体电阻;Rd为太阳能电池扩散层的薄层 电阻,也可以理解

10、为电池表面细栅线两旁的横向电阻; Rc 为金属 半导体的接触电阻;Rm为电极材料电阻。Rm、Rd可以统一看为发射 区电阻,Rc、Rb可以统一看为基区电阻。良好的电极材料、图形和 制备工艺可以减小薄层电阻对Rs的影响及减小Rc、Rm的大小。般来说我们希望Rs越小好好。从上表数据右以看出,采用新网版工艺的电池片比之前的电池 片Rs有了一定的改善,但不是很大,不过毕竟有了改善。由于采用了 密栅设计,我们认为此改善主要来自于横向电阻的改善,当然,使用 新浆料所带来的接触电阻的改善也是可以肯定地,但毕竟比较小。另 外,相对于E-CELL电池片,前两者的Rs明显差很多,而E-CELL电池 片,不论是体电阴

11、率还是方块电阻都要比另外两者差很多。由以上比 较,我们可以得出以下结论:在组成串联电阻Rs的四个因素中,它们 对总体Rs的影响顺序依次为:体电阻Rb,接触电阻Rc,横向电阻Rd 和电极电阻Rm。Rs的改善对FF影响主要表现在:随着Rs减小,电池片本身 的内耗也随之减小,从而使 FF得到提高。2.2RshRsh在I-V曲线图上的直观意义是当V=0时,I-V曲线斜率的倒数的绝对值,如式4所示。而其本质是则是由于材料本身及生产工艺 等原因造成的种种漏电通道。所以,理论上讲我们希望其越大越好。由工艺过程引入的漏电通道主要有以下六种:1Linear edge shunts2Nonlinear edge

12、shunts3Cracks and holes4Schotty-type shunts5Scratches6Aluminum shunts 由材料本身引入的漏电通道主要有以下三种: 1Strongly recombinative crystal defects 2Inversion layer at precipitatesRsh是与Io紧密联系在一起的。实际上它们描述的是同一个 现象:光生电流的非常规复合损失。只是Rsh具有更丰富的内涵及更 直观的表现。在日常生产中,我们发现相对于Rsh, Rs的调控性更好些,即 Rs对烧结及其他工艺参数比如印刷质量更敏感些。更实际的情况是 这样的:在日常的

13、工艺过程中,对于Rsh并没有十分明确的调节对象 (就像细栅线的高宽比一样),工艺人员往往束手无策。采用新栅线工艺(71栅线)后,Voc,Isc,Rs只得到了些微的改 善,FF的改善比较明显。唯独Rsh下降了很多,说明由于采用新工艺, 我们引入了更多的漏电通道,而这些漏电通道吞掉了很多本应由新工 艺带来的电流改进。由于我们的新工艺只是对PECVD以后的程序进行 了改进,而正面电极栅线遮光面积前后并没有太大的变化,所以 PECVD 工序的可能性最大,至少在目前看来是这样的。另外我个人认 为跟正面电极浆料也有一定的关系:在没有使用PV159浆料之前我们 的Rsh基本都是50以上,作到100也是常有的

14、事,只是UMG的电池 片Rsh比较低,但即使这样,也比现在的要高很多。理论上,往往我们都认为是Rs和Rsh共同表现了 FF的优劣, 而实际上只有Rs更具体更充分地表现出了它的这个职能。3,Isc理论上,描述电流的经典公式如式4所示;直观上,I-V曲线 如上图-1所示。太阳能电池的一切根源则是由PN结所搜集的由光生伏特效应所产生的光生载流子,而载流子的聚集又产生稳定的电势Voc,从而 行成太阳能电池工作的基本构架。我们在对太阳能电池的研究与生产中所作的努力绝大部分是 间接地为了提高 Isc (直接地为了提高Eff)。如:表面织构化与淀积 ARC膜是为了提高光的吸收利用率从而从源头体高Isc;改进

15、PN结深 与参杂提高方块电阻,采用细栅线等提高光生电流收集几率从而从过 程中减少光生电流的损失间接提高Isc;而采用各种更精细的工艺制 程,如各种不同的表面织构及正面电极则是为了能更细致更专业地从 源头及过程中优化Isc。我们可以将 Voc 与 Isc 并称为太阳能电池的两大最主要电性 能参数,而转换效率Eff则是其优劣最直接的展现。一般来说,整个产线从制绒到丝网印刷的各个工序都可以对 Isc 产生直接而显著的影响。而他们的影响方式不外乎两种:影响光 的吸收效率或影响光生载流子的吸收几率。而每道工序都有相应的工 艺控制点,这些控制点也都体现了如上面所说的影响。如:1,制绒工序的减薄量。它本质上反映的是表面织构化的 质量,即倒金字塔的几何结构包括其宽度和高度,而正是这些参数直 接地影响了光的吸收效率,此工序对Isc的影响主要体现在对光的吸 收效率方面,而此工序由于清洗不彻底或污染则在后续工序中影响载 流子的收集几率。2,扩散工序的方块电阻及不均匀度。它们主要是用来描述扩 散式PN结的质量,本质上反映的是扩散杂质在PN结中的分布情况,包括杂质的总量,杂质分布的深度和杂质分布的均匀度。由于 PN

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 建筑/环境 > 建筑资料

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号